Cargando…
Accounting for uncertainty in training data to improve machine learning performance in predicting new disease activity in early multiple sclerosis
INTRODUCTION: Machine learning (ML) has great potential for using health data to predict clinical outcomes in individual patients. Missing data are a common challenge in training ML algorithms, such as when subjects withdraw from a clinical study, leaving some samples with missing outcome labels. In...
Autores principales: | Tayyab, Maryam, Metz, Luanne M., Li, David K.B., Kolind, Shannon, Carruthers, Robert, Traboulsee, Anthony, Tam, Roger C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251494/ https://www.ncbi.nlm.nih.gov/pubmed/37305756 http://dx.doi.org/10.3389/fneur.2023.1165267 |
Ejemplares similares
-
Machine learning in secondary progressive multiple sclerosis: an improved predictive model for short-term disability progression
por: Law, Marco TK, et al.
Publicado: (2019) -
Both Stationary and Dynamic Functional Interhemispheric Connectivity Are Strongly Associated With Performance on Cognitive Tests in Multiple Sclerosis
por: Lin, Sue-Jin, et al.
Publicado: (2020) -
Quantifying visual pathway axonal and myelin loss in multiple sclerosis and neuromyelitis optica
por: Manogaran, Praveena, et al.
Publicado: (2016) -
Effect of different doses of gadolinium contrast agent on clinical outcomes in MS
por: Ackermans, Nathalie, et al.
Publicado: (2019) -
Cervical cord myelin water imaging shows degenerative changes over one year in multiple sclerosis but not neuromyelitis optica spectrum disorder
por: Combes, Anna J.E., et al.
Publicado: (2017)