Cargando…
Near-Infrared Spectroscopy and Machine Learning for Accurate Dating of Historical Books
[Image: see text] Non-destructive, fast, and accurate methods of dating are highly desirable for many heritage objects. Here, we present and critically evaluate the use of near-infrared (NIR) spectroscopic data combined with three supervised machine learning methods to predict the publication year o...
Autores principales: | Coppola, Floriana, Frigau, Luca, Markelj, Jernej, Malešič, Jasna, Conversano, Claudio, Strlič, Matija |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251519/ https://www.ncbi.nlm.nih.gov/pubmed/37216468 http://dx.doi.org/10.1021/jacs.3c02835 |
Ejemplares similares
-
Machine learning-assisted non-destructive plasticizer identification and quantification in historical PVC objects based on IR spectroscopy
por: Rijavec, Tjaša, et al.
Publicado: (2022) -
Determination of Cellulose Degree of Polymerization in Historical Papers with High Lignin Content
por: Malešič, Jasna, et al.
Publicado: (2021) -
Non-Destructive Evaluation of Historical Paper Based on pH Estimation from VOC Emissions
por: Strlič, Matija, et al.
Publicado: (2007) -
Rapid and Accurate Evaluation of the Quality of Commercial Organic Fertilizers Using Near Infrared Spectroscopy
por: Wang, Chang, et al.
Publicado: (2014) -
Near-Infrared Spectroscopy in Bio-Applications
por: Beć, Krzysztof B., et al.
Publicado: (2020)