Cargando…
Current Model Systems for Investigating Epithelioid Haemangioendothelioma
SIMPLE SUMMARY: Epithelioid haemangioendothelioma is a rare type of cancer with an unpredictable disease course and very few treatment options. To better understand how this type of cancer develops and to uncover possible lines of treatment, it is critical to have experimental approaches to study th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251951/ https://www.ncbi.nlm.nih.gov/pubmed/37296967 http://dx.doi.org/10.3390/cancers15113005 |
_version_ | 1785056054679175168 |
---|---|
author | Neil, Emily Kouskoff, Valerie |
author_facet | Neil, Emily Kouskoff, Valerie |
author_sort | Neil, Emily |
collection | PubMed |
description | SIMPLE SUMMARY: Epithelioid haemangioendothelioma is a rare type of cancer with an unpredictable disease course and very few treatment options. To better understand how this type of cancer develops and to uncover possible lines of treatment, it is critical to have experimental approaches to study this cancer. Here, we describe and compare the model systems that are currently available to study this disease. The research undertaken and the discoveries made using each of these experimental models is presented, and the advantages and disadvantages of each model are discussed. ABSTRACT: Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients. |
format | Online Article Text |
id | pubmed-10251951 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102519512023-06-10 Current Model Systems for Investigating Epithelioid Haemangioendothelioma Neil, Emily Kouskoff, Valerie Cancers (Basel) Review SIMPLE SUMMARY: Epithelioid haemangioendothelioma is a rare type of cancer with an unpredictable disease course and very few treatment options. To better understand how this type of cancer develops and to uncover possible lines of treatment, it is critical to have experimental approaches to study this cancer. Here, we describe and compare the model systems that are currently available to study this disease. The research undertaken and the discoveries made using each of these experimental models is presented, and the advantages and disadvantages of each model are discussed. ABSTRACT: Epithelioid haemangioendothelioma (EHE) is a rare sarcoma of the vascular endothelium with an unpredictable disease course. EHE tumours can remain indolent for long period of time but may suddenly evolve into an aggressive disease with widespread metastases and a poor prognosis. Two mutually exclusive chromosomal translocations define EHE tumours, each involving one of the transcription co-factors TAZ and YAP. The TAZ-CAMTA1 fusion protein results from a t(1;3) translocation and is present in 90% of EHE tumours. The remaining 10% of EHE cases harbour a t(X;11) translocation, resulting in the YAP1-TFE3 (YT) fusion protein. Until recently, the lack of representative EHE models made it challenging to study the mechanisms by which these fusion proteins promote tumorigenesis. Here, we describe and compare the recently developed experimental approaches that are currently available for studying this cancer. After summarising the key findings obtained with each experimental approach, we discuss the advantages and limitations of these different model systems. Our survey of the current literature shows how each experimental approach can be utilised in different ways to improve our understanding of EHE initiation and progression. Ultimately, this should lead to better treatment options for patients. MDPI 2023-05-31 /pmc/articles/PMC10251951/ /pubmed/37296967 http://dx.doi.org/10.3390/cancers15113005 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Neil, Emily Kouskoff, Valerie Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title | Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title_full | Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title_fullStr | Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title_full_unstemmed | Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title_short | Current Model Systems for Investigating Epithelioid Haemangioendothelioma |
title_sort | current model systems for investigating epithelioid haemangioendothelioma |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251951/ https://www.ncbi.nlm.nih.gov/pubmed/37296967 http://dx.doi.org/10.3390/cancers15113005 |
work_keys_str_mv | AT neilemily currentmodelsystemsforinvestigatingepithelioidhaemangioendothelioma AT kouskoffvalerie currentmodelsystemsforinvestigatingepithelioidhaemangioendothelioma |