Cargando…
Computed Tomography as a Method for Age Determination of Carnivora and Odontocetes with Validation from Individuals with Known Age
SIMPLE SUMMARY: Especially when it comes to ancient and valuable museum samples of rare or extinct species, non-invasive methods for aging specimens are preferable. X-ray micro-computed tomography (µ-CT) is considered a non-invasive technique for age determination of mammalian carnivores and toothed...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251996/ https://www.ncbi.nlm.nih.gov/pubmed/37889740 http://dx.doi.org/10.3390/ani13111783 |
Sumario: | SIMPLE SUMMARY: Especially when it comes to ancient and valuable museum samples of rare or extinct species, non-invasive methods for aging specimens are preferable. X-ray micro-computed tomography (µ-CT) is considered a non-invasive technique for age determination of mammalian carnivores and toothed whales. Teeth from 13 red foxes (Vulpes vulpes), 2 American mink (Neogale vison), and 2 harbor porpoises (Phocoena phocoena) of known age were examined using µ-CT. The number of visible dental growth layers extracted from the µ-CT data was highly correlated with the true age of the individuals for all three species. ABSTRACT: Traditional methods for age determination of wildlife include either slicing thin sections off or grinding a tooth, both of which are laborious and invasive. Especially when it comes to ancient and valuable museum samples of rare or extinct species, non-invasive methods are preferable. In this study, X-ray micro-computed tomography (µ-CT) was verified as an alternative non-invasive method for age determination of three species within the order of Carnivora and suborders Odontoceti. Teeth from 13 red foxes (Vulpes vulpes), 2 American mink (Neogale vison), and 2 harbor porpoises (Phocoena phocoena) of known age were studied using µ-CT. The number of visible dental growth layers in the µ-CT were highly correlated with true age for all three species (R(2) = 96%, p < 0.001). In addition, the Bland–Altman plot showed high agreement between the age of individuals and visible dental layers represented in 2D slices of the 3D µ-CT images. The true age of individuals was on average 0.3 (±0.6 SD) years higher than the age interpreted by the µ-CT image, and there was a 95% agreement between the true age and the age interpreted from visible dental layers in the µ-CT. |
---|