Cargando…
Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population
SIMPLE SUMMARY: Despite studies conducted with other seaweed species on in vitro gas production, until now, no studies have been reported on the use of pelagic Sargassum as potential ruminant feed. Thus, the objective of the present study was to determine the effect of Sargassum inclusion, using tro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252004/ https://www.ncbi.nlm.nih.gov/pubmed/37889796 http://dx.doi.org/10.3390/ani13111858 |
_version_ | 1785056067362750464 |
---|---|
author | Canul-Ku, Luis Alberto Sanginés-García, José Roberto Urquizo, Edgar Aguilar Canul-Solís, Jorge Rodolfo Valdivieso-Pérez, Ingrid Abril Vargas-Bello-Pérez, Einar Molina-Botero, Isabel Arango, Jacobo Piñeiro-Vázquez, Ángel Trinidad |
author_facet | Canul-Ku, Luis Alberto Sanginés-García, José Roberto Urquizo, Edgar Aguilar Canul-Solís, Jorge Rodolfo Valdivieso-Pérez, Ingrid Abril Vargas-Bello-Pérez, Einar Molina-Botero, Isabel Arango, Jacobo Piñeiro-Vázquez, Ángel Trinidad |
author_sort | Canul-Ku, Luis Alberto |
collection | PubMed |
description | SIMPLE SUMMARY: Despite studies conducted with other seaweed species on in vitro gas production, until now, no studies have been reported on the use of pelagic Sargassum as potential ruminant feed. Thus, the objective of the present study was to determine the effect of Sargassum inclusion, using tropical grass as substrate, on in vitro gas production kinetics. Additionally, heavy metals and macro- and microminerals were determined in Sargassum. For that, in vitro incubations were performed with different levels of Sargassum inclusion on a basal substrate (Stargrass hay). In vitro results showed that up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses. ABSTRACT: This study determined the effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, total gas production (TGP), and protozoa population. The treatments were different levels of Sargassum inclusion on a basal substrate (Stargrass hay; Cynodon nlemfuensis) as follows: T0 (control treatment based on Stargrass hay), T10 (90% Stargrass hay + 10% Sargassum), T20 (80% Stargrass hay + 20% Sargassum), and T30 (70% Stargrass hay + 30% Sargassum). Ruminal fermentation kinetics and protozoa population were determined during 72 h of in vitro incubations. Compared to control, dry matter degradability at 48 and 72 h and organic matter degradability at 24 and 48 h were higher in Sargassum treatments. TGP was lower with T20 at 48 h. The total population of protozoa and the concentration of Entodinium spp. were lower at T20 at 48 h and T30 at 72 h. Cl, S, Ca, K, and Zn (103, 5.97, 88.73, 285.70 g/kg, and 15,900 mg/kg) were high in Sargassum, reaching twice or even nine times higher than the contents in Stargrass (11.37, 1.60, 43.53, 87.73 g/kg, and 866.67 mg/kg). Overall, up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses without negative effects on in vitro dry matter and organic matter degradability. |
format | Online Article Text |
id | pubmed-10252004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102520042023-06-10 Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population Canul-Ku, Luis Alberto Sanginés-García, José Roberto Urquizo, Edgar Aguilar Canul-Solís, Jorge Rodolfo Valdivieso-Pérez, Ingrid Abril Vargas-Bello-Pérez, Einar Molina-Botero, Isabel Arango, Jacobo Piñeiro-Vázquez, Ángel Trinidad Animals (Basel) Article SIMPLE SUMMARY: Despite studies conducted with other seaweed species on in vitro gas production, until now, no studies have been reported on the use of pelagic Sargassum as potential ruminant feed. Thus, the objective of the present study was to determine the effect of Sargassum inclusion, using tropical grass as substrate, on in vitro gas production kinetics. Additionally, heavy metals and macro- and microminerals were determined in Sargassum. For that, in vitro incubations were performed with different levels of Sargassum inclusion on a basal substrate (Stargrass hay). In vitro results showed that up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses. ABSTRACT: This study determined the effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, total gas production (TGP), and protozoa population. The treatments were different levels of Sargassum inclusion on a basal substrate (Stargrass hay; Cynodon nlemfuensis) as follows: T0 (control treatment based on Stargrass hay), T10 (90% Stargrass hay + 10% Sargassum), T20 (80% Stargrass hay + 20% Sargassum), and T30 (70% Stargrass hay + 30% Sargassum). Ruminal fermentation kinetics and protozoa population were determined during 72 h of in vitro incubations. Compared to control, dry matter degradability at 48 and 72 h and organic matter degradability at 24 and 48 h were higher in Sargassum treatments. TGP was lower with T20 at 48 h. The total population of protozoa and the concentration of Entodinium spp. were lower at T20 at 48 h and T30 at 72 h. Cl, S, Ca, K, and Zn (103, 5.97, 88.73, 285.70 g/kg, and 15,900 mg/kg) were high in Sargassum, reaching twice or even nine times higher than the contents in Stargrass (11.37, 1.60, 43.53, 87.73 g/kg, and 866.67 mg/kg). Overall, up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses without negative effects on in vitro dry matter and organic matter degradability. MDPI 2023-06-02 /pmc/articles/PMC10252004/ /pubmed/37889796 http://dx.doi.org/10.3390/ani13111858 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Canul-Ku, Luis Alberto Sanginés-García, José Roberto Urquizo, Edgar Aguilar Canul-Solís, Jorge Rodolfo Valdivieso-Pérez, Ingrid Abril Vargas-Bello-Pérez, Einar Molina-Botero, Isabel Arango, Jacobo Piñeiro-Vázquez, Ángel Trinidad Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title | Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title_full | Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title_fullStr | Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title_full_unstemmed | Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title_short | Effect of Pelagic Sargassum on In Vitro Dry Matter and Organic Matter Degradation, Gas Production, and Protozoa Population |
title_sort | effect of pelagic sargassum on in vitro dry matter and organic matter degradation, gas production, and protozoa population |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252004/ https://www.ncbi.nlm.nih.gov/pubmed/37889796 http://dx.doi.org/10.3390/ani13111858 |
work_keys_str_mv | AT canulkuluisalberto effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT sanginesgarciajoseroberto effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT urquizoedgaraguilar effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT canulsolisjorgerodolfo effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT valdiviesoperezingridabril effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT vargasbelloperezeinar effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT molinaboteroisabel effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT arangojacobo effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation AT pineirovazquezangeltrinidad effectofpelagicsargassumoninvitrodrymatterandorganicmatterdegradationgasproductionandprotozoapopulation |