Cargando…
Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability
SIMPLE SUMMARY: The extracellular-signal-regulated kinase 2 (ERK2) plays a key role in the Ras-Raf-MEK-ERK signal transduction cascade and is involved in the regulation of many cellular processes. The ERK2 signaling converts extracellular stimuli into cell proliferation and, when deregulated, can pr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252016/ https://www.ncbi.nlm.nih.gov/pubmed/37296900 http://dx.doi.org/10.3390/cancers15112938 |
_version_ | 1785056070255771648 |
---|---|
author | Novak, Leonore Petrosino, Maria Pasquo, Alessandra Chaikuad, Apirat Chiaraluce, Roberta Knapp, Stefan Consalvi, Valerio |
author_facet | Novak, Leonore Petrosino, Maria Pasquo, Alessandra Chaikuad, Apirat Chiaraluce, Roberta Knapp, Stefan Consalvi, Valerio |
author_sort | Novak, Leonore |
collection | PubMed |
description | SIMPLE SUMMARY: The extracellular-signal-regulated kinase 2 (ERK2) plays a key role in the Ras-Raf-MEK-ERK signal transduction cascade and is involved in the regulation of many cellular processes. The ERK2 signaling converts extracellular stimuli into cell proliferation and, when deregulated, can promote oncogenic transformation. The ERK2 missense variants, carrying a single amino acid substitution in the protein sequence, have been identified in cancer tissues. This study reports a comprehensive biochemical and biophysical study of the ERK2 wild-type and variants in the common docking site present in cancer. A detailed analysis, from a molecular point of view, of the variants clarifies the impact of a single nucleotide variation on protein structure, stability and function, is essential to design alternative therapeutic strategies, and is a preliminary step to personalized medicine. ABSTRACT: The extracellular-signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK) located downstream of the Ras-Raf-MEK-ERK signal transduction cascade, is involved in the regulation of a large variety of cellular processes. The ERK2, activated by phosphorylation, is the principal effector of a central signaling cascade that converts extracellular stimuli into cells. Deregulation of the ERK2 signaling pathway is related to many human diseases, including cancer. This study reports a comprehensive biophysical analysis of structural, function, and stability data of pure, recombinant human non-phosphorylated (NP-) and phosphorylated (P-) ERK2 wild-type and missense variants in the common docking site (CD-site) found in cancer tissues. Because the CD-site is involved in interaction with protein substrates and regulators, a biophysical characterization of missense variants adds information about the impact of point mutations on the ERK2 structure–function relationship. Most of the P-ERK2 variants in the CD-site display a reduced catalytic efficiency, and for the P-ERK2 D321E, D321N, D321V and E322K, changes in thermodynamic stability are observed. The thermal stability of NP-ERK2 and P-ERK2 D321E, D321G, and E322K is decreased with respect to the wild-type. In general, a single residue mutation in the CD-site may lead to structural local changes that reflects in alterations in the global ERK2 stability and catalysis. |
format | Online Article Text |
id | pubmed-10252016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102520162023-06-10 Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability Novak, Leonore Petrosino, Maria Pasquo, Alessandra Chaikuad, Apirat Chiaraluce, Roberta Knapp, Stefan Consalvi, Valerio Cancers (Basel) Article SIMPLE SUMMARY: The extracellular-signal-regulated kinase 2 (ERK2) plays a key role in the Ras-Raf-MEK-ERK signal transduction cascade and is involved in the regulation of many cellular processes. The ERK2 signaling converts extracellular stimuli into cell proliferation and, when deregulated, can promote oncogenic transformation. The ERK2 missense variants, carrying a single amino acid substitution in the protein sequence, have been identified in cancer tissues. This study reports a comprehensive biochemical and biophysical study of the ERK2 wild-type and variants in the common docking site present in cancer. A detailed analysis, from a molecular point of view, of the variants clarifies the impact of a single nucleotide variation on protein structure, stability and function, is essential to design alternative therapeutic strategies, and is a preliminary step to personalized medicine. ABSTRACT: The extracellular-signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK) located downstream of the Ras-Raf-MEK-ERK signal transduction cascade, is involved in the regulation of a large variety of cellular processes. The ERK2, activated by phosphorylation, is the principal effector of a central signaling cascade that converts extracellular stimuli into cells. Deregulation of the ERK2 signaling pathway is related to many human diseases, including cancer. This study reports a comprehensive biophysical analysis of structural, function, and stability data of pure, recombinant human non-phosphorylated (NP-) and phosphorylated (P-) ERK2 wild-type and missense variants in the common docking site (CD-site) found in cancer tissues. Because the CD-site is involved in interaction with protein substrates and regulators, a biophysical characterization of missense variants adds information about the impact of point mutations on the ERK2 structure–function relationship. Most of the P-ERK2 variants in the CD-site display a reduced catalytic efficiency, and for the P-ERK2 D321E, D321N, D321V and E322K, changes in thermodynamic stability are observed. The thermal stability of NP-ERK2 and P-ERK2 D321E, D321G, and E322K is decreased with respect to the wild-type. In general, a single residue mutation in the CD-site may lead to structural local changes that reflects in alterations in the global ERK2 stability and catalysis. MDPI 2023-05-26 /pmc/articles/PMC10252016/ /pubmed/37296900 http://dx.doi.org/10.3390/cancers15112938 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Novak, Leonore Petrosino, Maria Pasquo, Alessandra Chaikuad, Apirat Chiaraluce, Roberta Knapp, Stefan Consalvi, Valerio Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title | Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title_full | Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title_fullStr | Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title_full_unstemmed | Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title_short | Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability |
title_sort | mutation in the common docking domain affects map kinase erk2 catalysis and stability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252016/ https://www.ncbi.nlm.nih.gov/pubmed/37296900 http://dx.doi.org/10.3390/cancers15112938 |
work_keys_str_mv | AT novakleonore mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT petrosinomaria mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT pasquoalessandra mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT chaikuadapirat mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT chiaraluceroberta mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT knappstefan mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability AT consalvivalerio mutationinthecommondockingdomainaffectsmapkinaseerk2catalysisandstability |