Cargando…

NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients

SIMPLE SUMMARY: The identification of potential molecular alterations is standard in the diagnostic pathway of non-small-cell lung cancer (NSCLC). The aim of this study is to determine the prevalence of NTRK fusions in NSCLC in a routine diagnostic setting using immunohistochemistry, fluorescence in...

Descripción completa

Detalles Bibliográficos
Autores principales: Overbeck, Tobias Raphael, Reiffert, Annika, Schmitz, Katja, Rittmeyer, Achim, Körber, Wolfgang, Hugo, Sara, Schnalke, Juliane, Lukat, Laura, Hugo, Tabea, Hinterthaner, Marc, Reuter-Jessen, Kirsten, Schildhaus, Hans-Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252111/
https://www.ncbi.nlm.nih.gov/pubmed/37296928
http://dx.doi.org/10.3390/cancers15112966
_version_ 1785056093166108672
author Overbeck, Tobias Raphael
Reiffert, Annika
Schmitz, Katja
Rittmeyer, Achim
Körber, Wolfgang
Hugo, Sara
Schnalke, Juliane
Lukat, Laura
Hugo, Tabea
Hinterthaner, Marc
Reuter-Jessen, Kirsten
Schildhaus, Hans-Ulrich
author_facet Overbeck, Tobias Raphael
Reiffert, Annika
Schmitz, Katja
Rittmeyer, Achim
Körber, Wolfgang
Hugo, Sara
Schnalke, Juliane
Lukat, Laura
Hugo, Tabea
Hinterthaner, Marc
Reuter-Jessen, Kirsten
Schildhaus, Hans-Ulrich
author_sort Overbeck, Tobias Raphael
collection PubMed
description SIMPLE SUMMARY: The identification of potential molecular alterations is standard in the diagnostic pathway of non-small-cell lung cancer (NSCLC). The aim of this study is to determine the prevalence of NTRK fusions in NSCLC in a routine diagnostic setting using immunohistochemistry, fluorescence in situ hybridization, and RNA-based next-generation sequencing. A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). In total, 0.2% of all patients were NTRK positive. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. RNA-NGS or FISH NTRK positive results were mutually exclusive with alterations in EGFR/ALK/ROS1/BRAF/RET or KRAS. ABSTRACT: (1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population.
format Online
Article
Text
id pubmed-10252111
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102521112023-06-10 NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients Overbeck, Tobias Raphael Reiffert, Annika Schmitz, Katja Rittmeyer, Achim Körber, Wolfgang Hugo, Sara Schnalke, Juliane Lukat, Laura Hugo, Tabea Hinterthaner, Marc Reuter-Jessen, Kirsten Schildhaus, Hans-Ulrich Cancers (Basel) Article SIMPLE SUMMARY: The identification of potential molecular alterations is standard in the diagnostic pathway of non-small-cell lung cancer (NSCLC). The aim of this study is to determine the prevalence of NTRK fusions in NSCLC in a routine diagnostic setting using immunohistochemistry, fluorescence in situ hybridization, and RNA-based next-generation sequencing. A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). In total, 0.2% of all patients were NTRK positive. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. RNA-NGS or FISH NTRK positive results were mutually exclusive with alterations in EGFR/ALK/ROS1/BRAF/RET or KRAS. ABSTRACT: (1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population. MDPI 2023-05-29 /pmc/articles/PMC10252111/ /pubmed/37296928 http://dx.doi.org/10.3390/cancers15112966 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Overbeck, Tobias Raphael
Reiffert, Annika
Schmitz, Katja
Rittmeyer, Achim
Körber, Wolfgang
Hugo, Sara
Schnalke, Juliane
Lukat, Laura
Hugo, Tabea
Hinterthaner, Marc
Reuter-Jessen, Kirsten
Schildhaus, Hans-Ulrich
NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title_full NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title_fullStr NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title_full_unstemmed NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title_short NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
title_sort ntrk gene fusions in non-small-cell lung cancer: real-world screening data of 1068 unselected patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252111/
https://www.ncbi.nlm.nih.gov/pubmed/37296928
http://dx.doi.org/10.3390/cancers15112966
work_keys_str_mv AT overbecktobiasraphael ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT reiffertannika ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT schmitzkatja ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT rittmeyerachim ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT korberwolfgang ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT hugosara ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT schnalkejuliane ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT lukatlaura ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT hugotabea ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT hinterthanermarc ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT reuterjessenkirsten ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients
AT schildhaushansulrich ntrkgenefusionsinnonsmallcelllungcancerrealworldscreeningdataof1068unselectedpatients