Cargando…
On the Use of a Convolutional Block Attention Module in Deep Learning-Based Human Activity Recognition with Motion Sensors
Sensor-based human activity recognition with wearable devices has captured the attention of researchers in the last decade. The possibility of collecting large sets of data from various sensors in different body parts, automatic feature extraction, and aiming to recognize more complex activities hav...
Autores principales: | Agac, Sumeyye, Durmaz Incel, Ozlem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252329/ https://www.ncbi.nlm.nih.gov/pubmed/37296713 http://dx.doi.org/10.3390/diagnostics13111861 |
Ejemplares similares
-
Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors
por: Shoaib, Muhammad, et al.
Publicado: (2016) -
Fusion of Smartphone Motion Sensors for Physical Activity Recognition
por: Shoaib, Muhammad, et al.
Publicado: (2014) -
Analysis of Movement, Orientation and Rotation-Based Sensing for Phone Placement Recognition
por: Durmaz Incel, Ozlem
Publicado: (2015) -
Self-Attention-Based Deep Convolution LSTM Framework for Sensor-Based Badminton Activity Recognition
por: Deng, Jingyang, et al.
Publicado: (2023) -
A Survey of Online Activity Recognition Using Mobile Phones
por: Shoaib, Muhammad, et al.
Publicado: (2015)