Cargando…

Development of a Nurse Turnover Prediction Model in Korea Using Machine Learning

Nurse turnover is a critical issue in Korea, as it affects the quality of patient care and increases the financial burden on healthcare systems. To address this problem, this study aimed to develop and evaluate a machine learning-based prediction model for nurse turnover in Korea and analyze factors...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seong-Kwang, Kim, Eun-Joo, Kim, Hye-Kyeong, Song, Sung-Sook, Park, Bit-Na, Jo, Kyoung-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252429/
https://www.ncbi.nlm.nih.gov/pubmed/37297723
http://dx.doi.org/10.3390/healthcare11111583
Descripción
Sumario:Nurse turnover is a critical issue in Korea, as it affects the quality of patient care and increases the financial burden on healthcare systems. To address this problem, this study aimed to develop and evaluate a machine learning-based prediction model for nurse turnover in Korea and analyze factors influencing nurse turnover. The study was conducted in two phases: building the prediction model and evaluating its performance. Three models, namely, decision tree, logistic regression, and random forest were evaluated and compared to build the nurse turnover prediction model. The importance of turnover decision factors was also analyzed. The random forest model showed the highest accuracy of 0.97. The accuracy of turnover prediction within one year was improved to 98.9% with the optimized random forest. Salary was the most important decision factor for nurse turnover. The nurse turnover prediction model developed in this study can efficiently predict nurse turnover in Korea with minimal personnel and cost through machine learning. The model can effectively manage nurse turnover in a cost-effective manner if utilized in hospitals or nursing units.