Cargando…
Brain Tumor Class Detection in Flair/T2 Modality MRI Slices Using Elephant-Herd Algorithm Optimized Features
Several advances in computing facilities were made due to the advancement of science and technology, including the implementation of automation in multi-specialty hospitals. This research aims to develop an efficient deep-learning-based brain-tumor (BT) detection scheme to detect the tumor in FLAIR-...
Autores principales: | Rajinikanth, Venkatesan, Vincent, P. M. Durai Raj, Gnanaprakasam, C. N., Srinivasan, Kathiravan, Chang, Chuan-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252483/ https://www.ncbi.nlm.nih.gov/pubmed/37296683 http://dx.doi.org/10.3390/diagnostics13111832 |
Ejemplares similares
-
A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification
por: Joshi, Vinayak Ravi, et al.
Publicado: (2022) -
A framework to distinguish healthy/cancer renal CT images using the fused deep features
por: Rajinikanth, Venkatesan, et al.
Publicado: (2023) -
Framework to Detect Schizophrenia in Brain MRI Slices with Mayfly Algorithm-Selected Deep and Handcrafted Features
por: Manic, K. Suresh, et al.
Publicado: (2022) -
MRI brain tumor segmentation using residual Spatial Pyramid Pooling-powered 3D U-Net
por: Vijay, Sanchit, et al.
Publicado: (2023) -
Deep Learning Assisted Neonatal Cry Classification via Support Vector Machine Models
por: K, Ashwini, et al.
Publicado: (2021)