Cargando…
Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation
Medical image analysis plays an important role in clinical diagnosis. In this paper, we examine the recent Segment Anything Model (SAM) on medical images, and report both quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks, covering various imagi...
Autores principales: | Shi, Peilun, Qiu, Jianing, Abaxi, Sai Mu Dalike, Wei, Hao, Lo, Frank P.-W., Yuan, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10252742/ https://www.ncbi.nlm.nih.gov/pubmed/37296799 http://dx.doi.org/10.3390/diagnostics13111947 |
Ejemplares similares
-
Improving Existing Segmentators Performance with Zero-Shot Segmentators
por: Nanni, Loris, et al.
Publicado: (2023) -
Enhancing Agricultural Image Segmentation with an Agricultural Segment Anything Model Adapter
por: Li, Yaqin, et al.
Publicado: (2023) -
Zero-shot personalization of speech foundation models for depressed mood monitoring
por: Gerczuk, Maurice, et al.
Publicado: (2023) -
Initial segments of degrees below zero
por: Epstein, Richard L
Publicado: (1981) -
Bidirectional meta-Kronecker factored optimizer and Hausdorff distance loss for few-shot medical image segmentation
por: Kim, Yeongjoon, et al.
Publicado: (2023)