Cargando…
A New Hybrid Approach Based on Time Frequency Images and Deep Learning Methods for Diagnosis of Migraine Disease and Investigation of Stimulus Effect
Migraine is a neurological disorder that is associated with severe headaches and seriously affects the lives of patients. Diagnosing Migraine Disease (MD) can be laborious and time-consuming for specialists. For this reason, systems that can assist specialists in the early diagnosis of MD are import...
Autores principales: | Orhanbulucu, Fırat, Latifoğlu, Fatma, Baydemir, Recep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253200/ https://www.ncbi.nlm.nih.gov/pubmed/37296739 http://dx.doi.org/10.3390/diagnostics13111887 |
Ejemplares similares
-
Quantitative Electroencephalography Analysis for Improved Assessment of Consciousness Levels in Deep Coma Patients Using a Proposed Stimulus Stage
por: Altıntop, Çiğdem Gülüzar, et al.
Publicado: (2023) -
Using electrooculography with visual stimulus tracking test in diagnosing of ADHD: findings from machine learning algorithms
por: LATİFOĞLU, Fatma, et al.
Publicado: (2022) -
Distinguishing Parkinson’s Disease with GLCM Features from the Hankelization of EEG Signals
por: Karakaş, Mehmet Fatih, et al.
Publicado: (2023) -
Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach
por: Pan, Yayan, et al.
Publicado: (2022) -
Neuronal avalanches and time-frequency representations in stimulus-evoked activity
por: Arviv, Oshrit, et al.
Publicado: (2019)