Cargando…

A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound

Background: Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in he...

Descripción completa

Detalles Bibliográficos
Autores principales: Khalaf, Kareem, Terrin, Maria, Jovani, Manol, Rizkala, Tommy, Spadaccini, Marco, Pawlak, Katarzyna M., Colombo, Matteo, Andreozzi, Marta, Fugazza, Alessandro, Facciorusso, Antonio, Grizzi, Fabio, Hassan, Cesare, Repici, Alessandro, Carrara, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253269/
https://www.ncbi.nlm.nih.gov/pubmed/37297953
http://dx.doi.org/10.3390/jcm12113757
_version_ 1785056365609222144
author Khalaf, Kareem
Terrin, Maria
Jovani, Manol
Rizkala, Tommy
Spadaccini, Marco
Pawlak, Katarzyna M.
Colombo, Matteo
Andreozzi, Marta
Fugazza, Alessandro
Facciorusso, Antonio
Grizzi, Fabio
Hassan, Cesare
Repici, Alessandro
Carrara, Silvia
author_facet Khalaf, Kareem
Terrin, Maria
Jovani, Manol
Rizkala, Tommy
Spadaccini, Marco
Pawlak, Katarzyna M.
Colombo, Matteo
Andreozzi, Marta
Fugazza, Alessandro
Facciorusso, Antonio
Grizzi, Fabio
Hassan, Cesare
Repici, Alessandro
Carrara, Silvia
author_sort Khalaf, Kareem
collection PubMed
description Background: Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. Methods: AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. Results: AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. Conclusions: The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies.
format Online
Article
Text
id pubmed-10253269
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102532692023-06-10 A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound Khalaf, Kareem Terrin, Maria Jovani, Manol Rizkala, Tommy Spadaccini, Marco Pawlak, Katarzyna M. Colombo, Matteo Andreozzi, Marta Fugazza, Alessandro Facciorusso, Antonio Grizzi, Fabio Hassan, Cesare Repici, Alessandro Carrara, Silvia J Clin Med Review Background: Endoscopic Ultrasound (EUS) is widely used for the diagnosis of bilio-pancreatic and gastrointestinal (GI) tract diseases, for the evaluation of subepithelial lesions, and for sampling of lymph nodes and solid masses located next to the GI tract. The role of Artificial Intelligence in healthcare in growing. This review aimed to provide an overview of the current state of AI in EUS from imaging to pathological diagnosis and training. Methods: AI algorithms can assist in lesion detection and characterization in EUS by analyzing EUS images and identifying suspicious areas that may require further clinical evaluation or biopsy sampling. Deep learning techniques, such as convolutional neural networks (CNNs), have shown great potential for tumor identification and subepithelial lesion (SEL) evaluation by extracting important features from EUS images and using them to classify or segment the images. Results: AI models with new features can increase the accuracy of diagnoses, provide faster diagnoses, identify subtle differences in disease presentation that may be missed by human eyes, and provide more information and insights into disease pathology. Conclusions: The integration of AI in EUS images and biopsies has the potential to improve the diagnostic accuracy, leading to better patient outcomes and to a reduction in repeated procedures in case of non-diagnostic biopsies. MDPI 2023-05-30 /pmc/articles/PMC10253269/ /pubmed/37297953 http://dx.doi.org/10.3390/jcm12113757 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Khalaf, Kareem
Terrin, Maria
Jovani, Manol
Rizkala, Tommy
Spadaccini, Marco
Pawlak, Katarzyna M.
Colombo, Matteo
Andreozzi, Marta
Fugazza, Alessandro
Facciorusso, Antonio
Grizzi, Fabio
Hassan, Cesare
Repici, Alessandro
Carrara, Silvia
A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title_full A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title_fullStr A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title_full_unstemmed A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title_short A Comprehensive Guide to Artificial Intelligence in Endoscopic Ultrasound
title_sort comprehensive guide to artificial intelligence in endoscopic ultrasound
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253269/
https://www.ncbi.nlm.nih.gov/pubmed/37297953
http://dx.doi.org/10.3390/jcm12113757
work_keys_str_mv AT khalafkareem acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT terrinmaria acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT jovanimanol acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT rizkalatommy acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT spadaccinimarco acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT pawlakkatarzynam acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT colombomatteo acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT andreozzimarta acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT fugazzaalessandro acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT facciorussoantonio acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT grizzifabio acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT hassancesare acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT repicialessandro acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT carrarasilvia acomprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT khalafkareem comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT terrinmaria comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT jovanimanol comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT rizkalatommy comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT spadaccinimarco comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT pawlakkatarzynam comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT colombomatteo comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT andreozzimarta comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT fugazzaalessandro comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT facciorussoantonio comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT grizzifabio comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT hassancesare comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT repicialessandro comprehensiveguidetoartificialintelligenceinendoscopicultrasound
AT carrarasilvia comprehensiveguidetoartificialintelligenceinendoscopicultrasound