Cargando…
Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices
In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction g...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253483/ https://www.ncbi.nlm.nih.gov/pubmed/37297033 http://dx.doi.org/10.3390/ma16113899 |
_version_ | 1785056416655998976 |
---|---|
author | Meena Narayana Menon, Devanarayanan Pugliese, Diego Giardino, Matteo Janner, Davide |
author_facet | Meena Narayana Menon, Devanarayanan Pugliese, Diego Giardino, Matteo Janner, Davide |
author_sort | Meena Narayana Menon, Devanarayanan |
collection | PubMed |
description | In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens’ dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens’ shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications. |
format | Online Article Text |
id | pubmed-10253483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102534832023-06-10 Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices Meena Narayana Menon, Devanarayanan Pugliese, Diego Giardino, Matteo Janner, Davide Materials (Basel) Article In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens’ dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens’ shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications. MDPI 2023-05-23 /pmc/articles/PMC10253483/ /pubmed/37297033 http://dx.doi.org/10.3390/ma16113899 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Meena Narayana Menon, Devanarayanan Pugliese, Diego Giardino, Matteo Janner, Davide Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title | Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title_full | Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title_fullStr | Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title_full_unstemmed | Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title_short | Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices |
title_sort | laser-induced fabrication of micro-optics on bioresorbable calcium phosphate glass for implantable devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253483/ https://www.ncbi.nlm.nih.gov/pubmed/37297033 http://dx.doi.org/10.3390/ma16113899 |
work_keys_str_mv | AT meenanarayanamenondevanarayanan laserinducedfabricationofmicroopticsonbioresorbablecalciumphosphateglassforimplantabledevices AT pugliesediego laserinducedfabricationofmicroopticsonbioresorbablecalciumphosphateglassforimplantabledevices AT giardinomatteo laserinducedfabricationofmicroopticsonbioresorbablecalciumphosphateglassforimplantabledevices AT jannerdavide laserinducedfabricationofmicroopticsonbioresorbablecalciumphosphateglassforimplantabledevices |