Cargando…
Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications
Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-bas...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253569/ https://www.ncbi.nlm.nih.gov/pubmed/37298430 http://dx.doi.org/10.3390/ijms24119478 |
_version_ | 1785056437321334784 |
---|---|
author | Nagai, Mirian Yaeko Dias de Oliveira Mohammad, Suham Nowrooz Pinto, Andreia Adelaide G. Coimbra, Ednar Nascimento Peres, Giovani Bravin Suffredini, Ivana Barbosa Bernardi, Maria Martha Tournier, Alexander L. Jerman, Igor Cartwright, Steven John Bonamin, Leoni Villano |
author_facet | Nagai, Mirian Yaeko Dias de Oliveira Mohammad, Suham Nowrooz Pinto, Andreia Adelaide G. Coimbra, Ednar Nascimento Peres, Giovani Bravin Suffredini, Ivana Barbosa Bernardi, Maria Martha Tournier, Alexander L. Jerman, Igor Cartwright, Steven John Bonamin, Leoni Villano |
author_sort | Nagai, Mirian Yaeko Dias de Oliveira |
collection | PubMed |
description | Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-based herbicide (GBH) exposed living systems. Artemia salina cysts were kept in artificial seawater with 0.02% glyphosate (corresponding to 10% lethal concentration or LC10) under constant oxygenation, luminosity, and controlled temperature, to promote hatching in 48 h. Cysts were treated with 1% (v/v) potentized glyphosate in different dilution levels (Gly 6 cH, 30 cH, 200 cH) prepared the day before according to homeopathic techniques, using GBH from the same batch. Controls were unchallenged cysts, and cysts treated with succussed water or potentized vehicle. After 48 h, the number of born nauplii per 100 µL, nauplii vitality, and morphology were evaluated. The remaining seawater was used for physicochemical analyses using solvatochromic dyes. In a second set of experiments, Gly 6 cH treated cysts were observed under different degrees of salinity (50 to 100% seawater) and GBH concentrations (zero to LC 50); hatching and nauplii activity were recorded and analyzed using the ImageJ 1.52, plug-in Trackmate. The treatments were performed blind, and the codes were revealed after statistical analysis. Gly 6 cH increased nauplii vitality (p = 0.01) and improved the healthy/defective nauplii ratio (p = 0.005) but delayed hatching (p = 0.02). Overall, these results suggest Gly 6cH treatment promotes the emergence of the more GBH-resistant phenotype in the nauplii population. Also, Gly 6cH delays hatching, another useful survival mechanism in the presence of stress. Hatching arrest was most marked in 80% seawater when exposed to glyphosate at LC10. Water samples treated with Gly 6 cH showed specific interactions with solvatochromic dyes, mainly Coumarin 7, such that it appears to be a potential physicochemical marker for Gly 6 cH. In short, Gly 6 cH treatment appears to protect the Artemia salina population exposed to GBH at low concentrations. |
format | Online Article Text |
id | pubmed-10253569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102535692023-06-10 Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications Nagai, Mirian Yaeko Dias de Oliveira Mohammad, Suham Nowrooz Pinto, Andreia Adelaide G. Coimbra, Ednar Nascimento Peres, Giovani Bravin Suffredini, Ivana Barbosa Bernardi, Maria Martha Tournier, Alexander L. Jerman, Igor Cartwright, Steven John Bonamin, Leoni Villano Int J Mol Sci Article Glyphosate is an herbicide widely used in agriculture but can present chronic toxicity in low concentrations. Artemia salina is a common bio-indicator of ecotoxicity; it was used herein as a model to evaluate the effect of highly diluted-succussed glyphosate (potentized glyphosate) in glyphosate-based herbicide (GBH) exposed living systems. Artemia salina cysts were kept in artificial seawater with 0.02% glyphosate (corresponding to 10% lethal concentration or LC10) under constant oxygenation, luminosity, and controlled temperature, to promote hatching in 48 h. Cysts were treated with 1% (v/v) potentized glyphosate in different dilution levels (Gly 6 cH, 30 cH, 200 cH) prepared the day before according to homeopathic techniques, using GBH from the same batch. Controls were unchallenged cysts, and cysts treated with succussed water or potentized vehicle. After 48 h, the number of born nauplii per 100 µL, nauplii vitality, and morphology were evaluated. The remaining seawater was used for physicochemical analyses using solvatochromic dyes. In a second set of experiments, Gly 6 cH treated cysts were observed under different degrees of salinity (50 to 100% seawater) and GBH concentrations (zero to LC 50); hatching and nauplii activity were recorded and analyzed using the ImageJ 1.52, plug-in Trackmate. The treatments were performed blind, and the codes were revealed after statistical analysis. Gly 6 cH increased nauplii vitality (p = 0.01) and improved the healthy/defective nauplii ratio (p = 0.005) but delayed hatching (p = 0.02). Overall, these results suggest Gly 6cH treatment promotes the emergence of the more GBH-resistant phenotype in the nauplii population. Also, Gly 6cH delays hatching, another useful survival mechanism in the presence of stress. Hatching arrest was most marked in 80% seawater when exposed to glyphosate at LC10. Water samples treated with Gly 6 cH showed specific interactions with solvatochromic dyes, mainly Coumarin 7, such that it appears to be a potential physicochemical marker for Gly 6 cH. In short, Gly 6 cH treatment appears to protect the Artemia salina population exposed to GBH at low concentrations. MDPI 2023-05-30 /pmc/articles/PMC10253569/ /pubmed/37298430 http://dx.doi.org/10.3390/ijms24119478 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nagai, Mirian Yaeko Dias de Oliveira Mohammad, Suham Nowrooz Pinto, Andreia Adelaide G. Coimbra, Ednar Nascimento Peres, Giovani Bravin Suffredini, Ivana Barbosa Bernardi, Maria Martha Tournier, Alexander L. Jerman, Igor Cartwright, Steven John Bonamin, Leoni Villano Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title | Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title_full | Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title_fullStr | Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title_full_unstemmed | Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title_short | Highly Diluted Glyphosate Mitigates Its Effects on Artemia salina: Physicochemical Implications |
title_sort | highly diluted glyphosate mitigates its effects on artemia salina: physicochemical implications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253569/ https://www.ncbi.nlm.nih.gov/pubmed/37298430 http://dx.doi.org/10.3390/ijms24119478 |
work_keys_str_mv | AT nagaimirianyaekodiasdeoliveira highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT mohammadsuhamnowrooz highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT pintoandreiaadelaideg highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT coimbraednarnascimento highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT peresgiovanibravin highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT suffrediniivanabarbosa highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT bernardimariamartha highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT tournieralexanderl highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT jermanigor highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT cartwrightstevenjohn highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications AT bonaminleonivillano highlydilutedglyphosatemitigatesitseffectsonartemiasalinaphysicochemicalimplications |