Cargando…

Research on Cutting Layer Characteristics of Superalloy under High-Pressure Cooling

Superalloys are widely used in the aerospace field and are a typical difficult-to-cut material. When the PCBN tool is used to cut superalloys, there will be problems such as a large cutting force, a high cutting temperature, and gradual tool wear. High-pressure cooling technology can effectively sol...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lubin, Chen, Shuning, Li, Tiankang, Wu, Mingyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253586/
https://www.ncbi.nlm.nih.gov/pubmed/37297067
http://dx.doi.org/10.3390/ma16113931
Descripción
Sumario:Superalloys are widely used in the aerospace field and are a typical difficult-to-cut material. When the PCBN tool is used to cut superalloys, there will be problems such as a large cutting force, a high cutting temperature, and gradual tool wear. High-pressure cooling technology can effectively solve these problems. Therefore, this paper carried out an experimental study of a PCBN tool cutting superalloys under high-pressure cooling and analyzed the influence of high-pressure coolant on the characteristics of the cutting layer. The results show that the main cutting force can be reduced by 19~45% and 11~39% when cutting superalloys under high-pressure cooling compared with dry cutting and atmospheric pressure cutting, respectively, in the range of test parameters. The surface roughness of the machined workpiece is less affected by the high-pressure coolant, but the high-pressure coolant can help reduce the surface residual stress. The high-pressure coolant can effectively improve the chip’s breaking ability. In order to ensure the service life of PCBN tools, when cutting superalloys under high-pressure cooling the coolant pressure should not be too high, and 50 bar is more appropriate. This provides a certain technical basis for the efficient cutting of superalloys under high-pressure cooling conditions.