Cargando…
Laboratory Data and IBDQ—Effective Predictors for the Non-Invasive Machine-Learning-Based Prediction of Endoscopic Activity in Ulcerative Colitis
A suitable, non-invasive biomarker for assessing endoscopic disease activity (EDA) in ulcerative colitis (UC) has yet to be identified. Our study aimed to develop a cost-effective and non-invasive machine learning (ML) method that utilizes the cost-free Inflammatory Bowel Disease Questionnaire (IBDQ...
Autores principales: | Gavrilescu, Otilia, Popa, Iolanda Valentina, Dranga, Mihaela, Mihai, Ruxandra, Cijevschi Prelipcean, Cristina, Mihai, Cătălina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253703/ https://www.ncbi.nlm.nih.gov/pubmed/37297804 http://dx.doi.org/10.3390/jcm12113609 |
Ejemplares similares
-
New onset severe ulcerative colitis following Ixekizumab therapy
por: Morosanu, Alina Mihaela, et al.
Publicado: (2022) -
Impact of COVID-19 Pandemic on the Quality of Life of IBD Patients
por: Gavrilescu, Otilia, et al.
Publicado: (2022) -
Ischemic Heart Disease in Patients with Inflammatory Bowel Disease: Risk Factors, Mechanisms and Prevention
por: Jucan, Alina Ecaterina, et al.
Publicado: (2022) -
Extrapancreatic necrosis volume: A new tool in acute pancreatitis severity assessment?
por: Cucuteanu, Bogdan, et al.
Publicado: (2021) -
A Machine Learning Model Accurately Predicts Ulcerative Colitis Activity at One Year in Patients Treated with Anti-Tumour Necrosis Factor α Agents
por: Popa, Iolanda Valentina, et al.
Publicado: (2020)