Cargando…
An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population
In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253808/ https://www.ncbi.nlm.nih.gov/pubmed/37298521 http://dx.doi.org/10.3390/ijms24119570 |
_version_ | 1785056494419443712 |
---|---|
author | Wang, Can Hao, Xiaoshuai Liu, Xueqin Su, Yanzhu Pan, Yongpeng Zong, Chunmei Wang, Wubin Xing, Guangnan He, Jianbo Gai, Junyi |
author_facet | Wang, Can Hao, Xiaoshuai Liu, Xueqin Su, Yanzhu Pan, Yongpeng Zong, Chunmei Wang, Wubin Xing, Guangnan He, Jianbo Gai, Junyi |
author_sort | Wang, Can |
collection | PubMed |
description | In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene–allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADL(DSF) and AAT(DSF), 130–141 genes with 384–406 alleles were explored, and for DFM and its related ADL(DFM) and AAT(DFM), 124–135 genes with 362–384 alleles were explored, in a total of six gene–allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene–allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks. |
format | Online Article Text |
id | pubmed-10253808 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102538082023-06-10 An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population Wang, Can Hao, Xiaoshuai Liu, Xueqin Su, Yanzhu Pan, Yongpeng Zong, Chunmei Wang, Wubin Xing, Guangnan He, Jianbo Gai, Junyi Int J Mol Sci Article In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene–allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADL(DSF) and AAT(DSF), 130–141 genes with 384–406 alleles were explored, and for DFM and its related ADL(DFM) and AAT(DFM), 124–135 genes with 362–384 alleles were explored, in a total of six gene–allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene–allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks. MDPI 2023-05-31 /pmc/articles/PMC10253808/ /pubmed/37298521 http://dx.doi.org/10.3390/ijms24119570 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Can Hao, Xiaoshuai Liu, Xueqin Su, Yanzhu Pan, Yongpeng Zong, Chunmei Wang, Wubin Xing, Guangnan He, Jianbo Gai, Junyi An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title | An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title_full | An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title_fullStr | An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title_full_unstemmed | An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title_short | An Improved Genome-Wide Association Procedure Explores Gene–Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population |
title_sort | improved genome-wide association procedure explores gene–allele constitutions and evolutionary drives of growth period traits in the global soybean germplasm population |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253808/ https://www.ncbi.nlm.nih.gov/pubmed/37298521 http://dx.doi.org/10.3390/ijms24119570 |
work_keys_str_mv | AT wangcan animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT haoxiaoshuai animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT liuxueqin animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT suyanzhu animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT panyongpeng animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT zongchunmei animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT wangwubin animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT xingguangnan animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT hejianbo animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT gaijunyi animprovedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT wangcan improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT haoxiaoshuai improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT liuxueqin improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT suyanzhu improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT panyongpeng improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT zongchunmei improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT wangwubin improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT xingguangnan improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT hejianbo improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation AT gaijunyi improvedgenomewideassociationprocedureexploresgenealleleconstitutionsandevolutionarydrivesofgrowthperiodtraitsintheglobalsoybeangermplasmpopulation |