Cargando…
Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions
Amyloid fibrils have immense potential to become the basis of modern biomaterials. The formation of amyloid fibrils in vitro strongly depends on the solvent properties. Ionic liquids (ILs), alternative solvents with tunable properties, have been shown to modulate amyloid fibrillization. In this work...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253814/ https://www.ncbi.nlm.nih.gov/pubmed/37298650 http://dx.doi.org/10.3390/ijms24119699 |
_version_ | 1785056495826632704 |
---|---|
author | Vanik, Vladimir Bednarikova, Zuzana Fabriciova, Gabriela Wang, Steven S.-S. Gazova, Zuzana Fedunova, Diana |
author_facet | Vanik, Vladimir Bednarikova, Zuzana Fabriciova, Gabriela Wang, Steven S.-S. Gazova, Zuzana Fedunova, Diana |
author_sort | Vanik, Vladimir |
collection | PubMed |
description | Amyloid fibrils have immense potential to become the basis of modern biomaterials. The formation of amyloid fibrils in vitro strongly depends on the solvent properties. Ionic liquids (ILs), alternative solvents with tunable properties, have been shown to modulate amyloid fibrillization. In this work, we studied the impact of five ILs with 1-ethyl-3-methylimidazolium cation [EMIM(+)] and anions of Hofmeisterseries hydrogen sulfate [HSO(4)(−)], acetate [AC(−)], chloride [Cl(−)], nitrate [NO(3)(−)], and tetrafluoroborate [BF(4)(−)] on the kinetics of insulin fibrillization and morphology, and the structure of insulin fibrils when applying fluorescence spectroscopy, AFM and ATR-FTIR spectroscopy. We found that the studied ILs were able to speed up the fibrillization process in an anion- and IL-concentration-dependent manner. At an IL concentration of 100 mM, the efficiency of the anions at promoting insulin amyloid fibrillization followed the reverse Hofmeister series, indicating the direct binding of ions with the protein surface. At a concentration of 25 mM, fibrils with different morphologies were formed, yet with similar secondary structure content. Moreover, no correlation with the Hofmeister ranking was detected for kinetics parameters. IL with the kosmotropic strongly hydrated [HSO(4)(−)] anion induced the formation of large amyloid fibril clusters, while the other kosmotropic anion [AC(−)] along with [Cl(−)] led to the formation of fibrils with similar needle-like morphologies to those formed in the IL-free solvent. The presence of the ILs with the chaotropic anions [NO(3)(−)] and [BF(4)(−)] resulted in longer laterally associated fibrils. The effect of the selected ILs was driven by a sensitive balance and interplay between specific protein–ion and ion–water interactions and non-specific long-range electrostatic shielding. |
format | Online Article Text |
id | pubmed-10253814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102538142023-06-10 Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions Vanik, Vladimir Bednarikova, Zuzana Fabriciova, Gabriela Wang, Steven S.-S. Gazova, Zuzana Fedunova, Diana Int J Mol Sci Article Amyloid fibrils have immense potential to become the basis of modern biomaterials. The formation of amyloid fibrils in vitro strongly depends on the solvent properties. Ionic liquids (ILs), alternative solvents with tunable properties, have been shown to modulate amyloid fibrillization. In this work, we studied the impact of five ILs with 1-ethyl-3-methylimidazolium cation [EMIM(+)] and anions of Hofmeisterseries hydrogen sulfate [HSO(4)(−)], acetate [AC(−)], chloride [Cl(−)], nitrate [NO(3)(−)], and tetrafluoroborate [BF(4)(−)] on the kinetics of insulin fibrillization and morphology, and the structure of insulin fibrils when applying fluorescence spectroscopy, AFM and ATR-FTIR spectroscopy. We found that the studied ILs were able to speed up the fibrillization process in an anion- and IL-concentration-dependent manner. At an IL concentration of 100 mM, the efficiency of the anions at promoting insulin amyloid fibrillization followed the reverse Hofmeister series, indicating the direct binding of ions with the protein surface. At a concentration of 25 mM, fibrils with different morphologies were formed, yet with similar secondary structure content. Moreover, no correlation with the Hofmeister ranking was detected for kinetics parameters. IL with the kosmotropic strongly hydrated [HSO(4)(−)] anion induced the formation of large amyloid fibril clusters, while the other kosmotropic anion [AC(−)] along with [Cl(−)] led to the formation of fibrils with similar needle-like morphologies to those formed in the IL-free solvent. The presence of the ILs with the chaotropic anions [NO(3)(−)] and [BF(4)(−)] resulted in longer laterally associated fibrils. The effect of the selected ILs was driven by a sensitive balance and interplay between specific protein–ion and ion–water interactions and non-specific long-range electrostatic shielding. MDPI 2023-06-02 /pmc/articles/PMC10253814/ /pubmed/37298650 http://dx.doi.org/10.3390/ijms24119699 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vanik, Vladimir Bednarikova, Zuzana Fabriciova, Gabriela Wang, Steven S.-S. Gazova, Zuzana Fedunova, Diana Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title | Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title_full | Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title_fullStr | Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title_full_unstemmed | Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title_short | Modulation of Insulin Amyloid Fibrillization in Imidazolium-Based Ionic Liquids with Hofmeister Series Anions |
title_sort | modulation of insulin amyloid fibrillization in imidazolium-based ionic liquids with hofmeister series anions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253814/ https://www.ncbi.nlm.nih.gov/pubmed/37298650 http://dx.doi.org/10.3390/ijms24119699 |
work_keys_str_mv | AT vanikvladimir modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions AT bednarikovazuzana modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions AT fabriciovagabriela modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions AT wangstevenss modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions AT gazovazuzana modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions AT fedunovadiana modulationofinsulinamyloidfibrillizationinimidazoliumbasedionicliquidswithhofmeisterseriesanions |