Cargando…
Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening
AISI 1065 is a carbon steels that is widely used in manufacturing industrial components owing to its high tensile strength and wear resistance. One of the major applications of such high-carbon steels is the manufacturing of multipoint cutting tools for materials such as metallic card clothing. The...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253842/ https://www.ncbi.nlm.nih.gov/pubmed/37297078 http://dx.doi.org/10.3390/ma16113944 |
_version_ | 1785056502743040000 |
---|---|
author | Dhakshinamoorthy, Praveena Harihara Subramanian, Krishnan Kannan, Karthik Palani, Geetha |
author_facet | Dhakshinamoorthy, Praveena Harihara Subramanian, Krishnan Kannan, Karthik Palani, Geetha |
author_sort | Dhakshinamoorthy, Praveena |
collection | PubMed |
description | AISI 1065 is a carbon steels that is widely used in manufacturing industrial components owing to its high tensile strength and wear resistance. One of the major applications of such high-carbon steels is the manufacturing of multipoint cutting tools for materials such as metallic card clothing. The quality of the yarn is determined by the transfer efficiency of the doffer wire, which depends on its saw tooth geometry. The life and efficiency of the doffer wire depends on its hardness, sharpness, and wear resistance. This study focuses on the output of laser shock peening on the surface of the cutting edge of samples without an ablative layer. The obtained microstructure is bainite, which is composed of finely dispersed carbides in the ferrite matrix. The ablative layer induces 11.2 MPa more surface compressive residual stress. The sacrificial layer acts as a thermal protectant by decreasing surface roughness to 30.5%. The sample with a protective layer has a value of 216 HV, which is 11.2% greater than that of the unpeened sample. |
format | Online Article Text |
id | pubmed-10253842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102538422023-06-10 Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening Dhakshinamoorthy, Praveena Harihara Subramanian, Krishnan Kannan, Karthik Palani, Geetha Materials (Basel) Article AISI 1065 is a carbon steels that is widely used in manufacturing industrial components owing to its high tensile strength and wear resistance. One of the major applications of such high-carbon steels is the manufacturing of multipoint cutting tools for materials such as metallic card clothing. The quality of the yarn is determined by the transfer efficiency of the doffer wire, which depends on its saw tooth geometry. The life and efficiency of the doffer wire depends on its hardness, sharpness, and wear resistance. This study focuses on the output of laser shock peening on the surface of the cutting edge of samples without an ablative layer. The obtained microstructure is bainite, which is composed of finely dispersed carbides in the ferrite matrix. The ablative layer induces 11.2 MPa more surface compressive residual stress. The sacrificial layer acts as a thermal protectant by decreasing surface roughness to 30.5%. The sample with a protective layer has a value of 216 HV, which is 11.2% greater than that of the unpeened sample. MDPI 2023-05-25 /pmc/articles/PMC10253842/ /pubmed/37297078 http://dx.doi.org/10.3390/ma16113944 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dhakshinamoorthy, Praveena Harihara Subramanian, Krishnan Kannan, Karthik Palani, Geetha Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title | Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title_full | Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title_fullStr | Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title_full_unstemmed | Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title_short | Study of Surface Modifications of Textile Card Clothing (AISI 1065 Alloy) by Laser Shock Peening |
title_sort | study of surface modifications of textile card clothing (aisi 1065 alloy) by laser shock peening |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253842/ https://www.ncbi.nlm.nih.gov/pubmed/37297078 http://dx.doi.org/10.3390/ma16113944 |
work_keys_str_mv | AT dhakshinamoorthypraveena studyofsurfacemodificationsoftextilecardclothingaisi1065alloybylasershockpeening AT hariharasubramaniankrishnan studyofsurfacemodificationsoftextilecardclothingaisi1065alloybylasershockpeening AT kannankarthik studyofsurfacemodificationsoftextilecardclothingaisi1065alloybylasershockpeening AT palanigeetha studyofsurfacemodificationsoftextilecardclothingaisi1065alloybylasershockpeening |