Cargando…

Effect of Processing Parameters on Bonding Performance of a Carbon Fiber/Polyetheretherketone Thermoplastic Composite Prepared by Induction Welding

Among the various welding techniques used to bond thermoplastic composites, induction welding stands out as a fast, clean, and contact-free process that shortens the welding time and prevents the weight increase of mechanical fastening, such as rivets and bolts. In this study, we manufactured polyet...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Bo-Kyung, Kang, Chang-Soo, Yoo, Myeong-Han, Seo, Min-Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253902/
https://www.ncbi.nlm.nih.gov/pubmed/37297089
http://dx.doi.org/10.3390/ma16113954
Descripción
Sumario:Among the various welding techniques used to bond thermoplastic composites, induction welding stands out as a fast, clean, and contact-free process that shortens the welding time and prevents the weight increase of mechanical fastening, such as rivets and bolts. In this study, we manufactured polyetheretherketone (PEEK)-resin-based thermoplastic carbon fiber (CF) composite materials at different automated fiber placement laser powers (3569, 4576, and 5034 W) and investigated their bonding and mechanical characteristics after induction welding. The quality of the composite was evaluating using various techniques, including optical microscopy, C-scanning, and mechanical strength measurements, and a thermal imaging camera was used to monitor the surface temperature of the specimen during its processing. The results revealed that the preparation conditions of the polymer/carbon fiber composites, such as the laser power and surface temperature, significantly affect the quality and performance of the induction-welding-bonded composites. A lower laser power during preparation resulted in weaker bonding between components of the composite and yielded samples with a lower shear stress.