Cargando…
Preparation and Characterization of Carbide Particle-Toughened Si–B System of High Thermostability Polycrystalline Diamond by HPHT Sintering
In this research, we report the synthesis of Si–TmC–B/PCD composites using Si, B, and transition metal carbide particles (TmC) as binders at high pressure and high temperature (HPHT method, 5.5 GPa and 1450 °C). The microstructure, elemental distribution, phase composition, thermal stability, and me...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253946/ https://www.ncbi.nlm.nih.gov/pubmed/37297065 http://dx.doi.org/10.3390/ma16113933 |
Sumario: | In this research, we report the synthesis of Si–TmC–B/PCD composites using Si, B, and transition metal carbide particles (TmC) as binders at high pressure and high temperature (HPHT method, 5.5 GPa and 1450 °C). The microstructure, elemental distribution, phase composition, thermal stability, and mechanical properties of PCD composites were systematically investigated. The Si–B/PCD sample is thermally stable in air at 919 °C. The initial oxidation temperature of the PCD sample with ZrC particles is as high as 976 °C, and it also has a maximum flexural strength of 762.2 MPa, and the highest fracture toughness of 8.0 MPa·m(1/2). |
---|