Cargando…
Nanoarchitectonics of Three-Dimensional Carbon Nanofiber-Supported Hollow Copper Sulfide Spheres for Asymmetric Supercapacitor Applications
Three-dimensional carbon nanofiber (3D-CNF)-supported hollow copper sulfide (HCuS) spheres were synthesized by the facile hydrothermal method. The morphology of the as-synthesized HCuS@3D-CNF composite clearly revealed that the 3D-CNFs act as a basement for HCuS spheres. The electrochemical performa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10253980/ https://www.ncbi.nlm.nih.gov/pubmed/37298635 http://dx.doi.org/10.3390/ijms24119685 |
Sumario: | Three-dimensional carbon nanofiber (3D-CNF)-supported hollow copper sulfide (HCuS) spheres were synthesized by the facile hydrothermal method. The morphology of the as-synthesized HCuS@3D-CNF composite clearly revealed that the 3D-CNFs act as a basement for HCuS spheres. The electrochemical performance of as-synthesized HCuS@3D-CNFs was evaluated by cyclic voltammetry (CV) tests, gravimetric charge–discharge (GCD) tests, and Nyquist plots. The obtained results revealed that the HCuS@3D-CNFs exhibited greater areal capacitance (4.6 F/cm(2)) compared to bare HCuS (0.64 F/cm(2)) at a current density of 2 mA/cm(2). Furthermore, HCuS@3D-CNFs retained excellent cyclic stability of 83.2% after 5000 cycles. The assembled asymmetric device (HCuS@3D-CNFs//BAC) exhibits an energy density of 0.15 mWh/cm(2) with a working potential window of 1.5 V in KOH electrolyte. The obtained results demonstrate that HZnS@3D-CNF nanoarchitectonics is a potential electrode material for supercapacitor applications. |
---|