Cargando…

Dual Drug-Loaded Nanoliposomes Encapsulating Curcumin and 5-Fluorouracil with Advanced Medicinal Applications: Self-Monitoring and Antitumor Therapy

Due to the presence of physiological barriers, it is difficult to achieve the desired therapeutic efficacy of drugs; thus, it is necessary to develop an efficient drug delivery system that enables advanced functions such as self-monitoring. Curcumin (CUR) is a naturally functional polyphenol whose e...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yu-Shi, Song, Jia-Wen, Zhong, Wen-Xiao, Yuan, Ming-Hao, Guo, Yu-Rou, Peng, Cheng, Guo, Li, Guo, Yi-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254180/
https://www.ncbi.nlm.nih.gov/pubmed/37298829
http://dx.doi.org/10.3390/molecules28114353
Descripción
Sumario:Due to the presence of physiological barriers, it is difficult to achieve the desired therapeutic efficacy of drugs; thus, it is necessary to develop an efficient drug delivery system that enables advanced functions such as self-monitoring. Curcumin (CUR) is a naturally functional polyphenol whose effectiveness is limited by poor solubility and low bioavailability, and its natural fluorescent properties are often overlooked. Therefore, we aimed to improve the antitumor activity and drug uptake monitoring by simultaneously delivering CUR and 5-Fluorouracil (5-FU) in the form of liposomes. In this study, dual drug-loaded liposomes (FC–DP–Lip) encapsulating CUR and 5-FU were prepared by the thin-film hydration method; their physicochemical properties were characterized; and their biosafety, drug uptake distribution in vivo, and tumor cell toxicity were evaluated. The results showed that the nanoliposome FC–DP–Lip showed good morphology, stability, and drug encapsulation efficiency. It showed good biocompatibility, with no side effects on zebrafish embryonic development. In vivo uptake in zebrafish showed that FC–DP–Lip has a long circulation time and presents gastrointestinal accumulation. In addition, FC–DP–Lip was cytotoxic against a variety of cancer cells. This work showed that FC–DP–Lip nanoliposomes can enhance the toxicity of 5-FU to cancer cells, demonstrating safety and efficiency, and enabling real-time self-monitoring functions.