Cargando…

Zeylleucapenoids A–D, Highly Oxygenated Diterpenoids with Anti-Inflammatory Activity from Leucas zeylanica (L.) R. Br.

Four previously undescribed highly oxygenated diterpenoids (1–4), zeylleucapenoids A–D, characterized by halimane and labdane skeletons, were isolated from the aerial parts of Leucas zeylanica. Their structures were elucidated primarily via NMR experiments. The absolute configuration of 1 was establ...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ting, Zhang, Xuan, Nong, Xu-Hua, Zhou, Xue-Ming, Chai, Ru-Ru, Li, Xiao-Bao, Chen, Guang-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254181/
https://www.ncbi.nlm.nih.gov/pubmed/37298948
http://dx.doi.org/10.3390/molecules28114472
Descripción
Sumario:Four previously undescribed highly oxygenated diterpenoids (1–4), zeylleucapenoids A–D, characterized by halimane and labdane skeletons, were isolated from the aerial parts of Leucas zeylanica. Their structures were elucidated primarily via NMR experiments. The absolute configuration of 1 was established using theoretical ECD calculations and X-ray crystallographic analysis, whereas those for 2–4 were assigned using theoretical ORD calculations. Zeylleucapenoids A–D were tested for anti-inflammatory activity against nitric oxide (NO) production in RAW264.7 macrophages, of which only 4 showed significant efficacy with an IC(50) value of 38.45 μM. Further, active compound 4 was also evaluated for the inhibition of the release of pro-inflammatory cytokines TNF-α and IL-6 and was found to have a dose-dependent inhibitory effect, while it showed nontoxic activity for zebrafish embryos. A subsequent Western blotting experiment revealed that 4 inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, molecular docking analysis indicated that the possible mechanism of action for 4 may be bind to targets via hydrogen and hydrophobic bond interactions.