Cargando…
Recent Advances in Light-Conversion Phosphors for Plant Growth and Strategies for the Modulation of Photoluminescence Properties
The advent of greenhouses greatly promoted the development of modern agriculture, which freed plants from regional and seasonal constraints. In plant growth, light plays a key role in plant photosynthesis. The photosynthesis of plants can selectively absorb light, and different light wavelengths res...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254275/ https://www.ncbi.nlm.nih.gov/pubmed/37299618 http://dx.doi.org/10.3390/nano13111715 |
Sumario: | The advent of greenhouses greatly promoted the development of modern agriculture, which freed plants from regional and seasonal constraints. In plant growth, light plays a key role in plant photosynthesis. The photosynthesis of plants can selectively absorb light, and different light wavelengths result in different plant growth reactions. Currently, light-conversion films and plant-growth LEDs have become two effective ways to improve the efficiency of plant photosynthesis, among which phosphors are the most critical materials. This review begins with a brief introduction of the effects of light on plant growth and the various techniques for promoting plant growth. Next, we review the up-to-date development of phosphors for plant growth and discussed the luminescence centers commonly used in blue, red and far-red phosphors, as well as their photophysical properties. Then, we summarize the advantages of red and blue composite phosphors and their designing strategies. Finally, we describe several strategies for regulating the spectral position of phosphors, broadening the emission spectrum, and improving quantum efficiency and thermal stability. This review may offer a good reference for researchers improving phosphors to become more suitable for plant growth. |
---|