Cargando…

Structure–Property Relationship of Macrocycles in Organic Photoelectric Devices: A Comprehensive Review

Macrocycles have attracted significant attention from academia due to their various applications in organic field-effect transistors, organic light-emitting diodes, organic photovoltaics, and dye-sensitized solar cells. Despite the existence of reports on the application of macrocycles in organic op...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Chunxiao, Yan, Yong, Peng, Qian, Zhang, Zheng, Wang, Tao, Chen, Xin, Wang, Jiacheng, Wei, Ying, Yang, Tonglin, Xie, Linghai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254295/
https://www.ncbi.nlm.nih.gov/pubmed/37299653
http://dx.doi.org/10.3390/nano13111750
Descripción
Sumario:Macrocycles have attracted significant attention from academia due to their various applications in organic field-effect transistors, organic light-emitting diodes, organic photovoltaics, and dye-sensitized solar cells. Despite the existence of reports on the application of macrocycles in organic optoelectronic devices, these reports are mainly limited to analyzing the structure–property relationship of a particular type of macrocyclic structure, and a systematic discussion on the structure–property is still lacking. Herein, we conducted a comprehensive analysis of a series of macrocycle structures to identify the key factors that affect the structure–property relationship between macrocycles and their optoelectronic device properties, including energy level structure, structural stability, film-forming property, skeleton rigidity, inherent pore structure, spatial hindrance, exclusion of perturbing end-effects, macrocycle size-dependent effects, and fullerene-like charge transport characteristics. These macrocycles exhibit thin-film and single-crystal hole mobility up to 10 and 26.8 cm(2) V(−1) s(−1), respectively, as well as a unique macrocyclization-induced emission enhancement property. A clear understanding of the structure–property relationship between macrocycles and optoelectronic device performance, as well as the creation of novel macrocycle structures such as organic nanogridarenes, may pave the way for high-performance organic optoelectronic devices.