Cargando…
Metaheuristic Optimization of Random Forest for Predicting Punch Shear Strength of FRP-Reinforced Concrete Beams
Predicting the punching shear strength (PSS) of fiber-reinforced polymer reinforced concrete (FRP-RC) beams is a critical task in the design and assessment of reinforced concrete structures. This study utilized three meta-heuristic optimization algorithms, namely ant lion optimizer (ALO), moth flame...
Autores principales: | Yang, Peixi, Li, Chuanqi, Qiu, Yingui, Huang, Shuai, Zhou, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254300/ https://www.ncbi.nlm.nih.gov/pubmed/37297168 http://dx.doi.org/10.3390/ma16114034 |
Ejemplares similares
-
Punching Shear Strength of FRP-Reinforced Concrete Slabs without Shear Reinforcements: A Reliability Assessment
por: Alkhatib, Soliman, et al.
Publicado: (2022) -
Flexural Strength Design of Hybrid FRP-Steel Reinforced Concrete Beams
por: Zhou, Binbin, et al.
Publicado: (2021) -
Experimental Study on the Shear Strength of Reinforced Concrete Beams with Various Integrated Shear Reinforcements
por: Yoo, Mooyoung
Publicado: (2022) -
Ensemble Tree-Based Approach towards Flexural Strength Prediction of FRP Reinforced Concrete Beams
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
A Machine Learning Model for Torsion Strength of Externally Bonded FRP-Reinforced Concrete Beams
por: Deifalla, Ahmed, et al.
Publicado: (2022)