Cargando…
Estimating Compressive Strength of Concrete Using Neural Electromagnetic Field Optimization
Concrete compressive strength (CCS) is among the most important mechanical characteristics of this widely used material. This study develops a novel integrative method for efficient prediction of CCS. The suggested method is an artificial neural network (ANN) favorably tuned by electromagnetic field...
Autores principales: | Akbarzadeh, Mohammad Reza, Ghafourian, Hossein, Anvari, Arsalan, Pourhanasa, Ramin, Nehdi, Moncef L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254481/ https://www.ncbi.nlm.nih.gov/pubmed/37297334 http://dx.doi.org/10.3390/ma16114200 |
Ejemplares similares
-
Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks
por: Marani, Afshin, et al.
Publicado: (2020) -
Predicting Compressive and Splitting Tensile Strengths of Silica Fume Concrete Using M5P Model Tree Algorithm
por: Shah, Hammad Ahmed, et al.
Publicado: (2022) -
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm–Artificial Neural Network
por: Ramadan Suleiman, Ahmed, et al.
Publicado: (2017) -
Estimating CO(2) Emission Savings from Ultrahigh Performance Concrete: A System Dynamics Approach
por: Sheheryar, Mubashar, et al.
Publicado: (2021) -
Effect of Polymers on Behavior of Ultra-High-Strength Concrete
por: Mayhoub, Ola A., et al.
Publicado: (2022)