Cargando…

Topological Design of a Hinger Bracket Based on Additive Manufacturing

Topology optimization technology is often used in the design of lightweight structures under the condition that mechanical performance should be guaranteed, but a topology-optimized structure is often complicated and difficult to process using traditional machining technology. In this study, the top...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Baocheng, Wu, Xilong, Liu, Le, Zhang, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254533/
https://www.ncbi.nlm.nih.gov/pubmed/37297194
http://dx.doi.org/10.3390/ma16114061
Descripción
Sumario:Topology optimization technology is often used in the design of lightweight structures under the condition that mechanical performance should be guaranteed, but a topology-optimized structure is often complicated and difficult to process using traditional machining technology. In this study, the topology optimization method, with a volume constraint and the minimization of structural flexibility, is applied to the lightweight design of a hinge bracket for civil aircraft. A mechanical performance analysis is conducted using numerical simulations to obtain the stress and deformation of the hinge bracket before and after topology optimization. The numerical simulation results show that the topology-optimized hinge bracket has good mechanical properties, and its weight was reduced by 28% compared with the original design of the model. In addition, the hinge bracket samples before and after topology optimization are prepared with additive manufacturing technology and mechanical performance tests are conducted using a universal mechanical testing machine. The test results show that the topology-optimized hinge bracket can satisfy the mechanical performance requirements of a hinge bracket at a weight loss ratio of 28%.