Cargando…
One-Step Electrochemical Dealloying of 3D Bi-Continuous Micro-Nanoporous Bismuth Electrodes and CO(2)RR Performance
The rapid development of electrochemical CO(2) reduction offers a promising route to convert intermittent renewable energy into products of high value-added fuels or chemical feedstocks. However, low faradaic efficiency, low current density, and a narrow potential range still limit the large-scale a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254552/ https://www.ncbi.nlm.nih.gov/pubmed/37299670 http://dx.doi.org/10.3390/nano13111767 |
Sumario: | The rapid development of electrochemical CO(2) reduction offers a promising route to convert intermittent renewable energy into products of high value-added fuels or chemical feedstocks. However, low faradaic efficiency, low current density, and a narrow potential range still limit the large-scale application of CO(2)RR electrocatalysts. Herein, monolith 3D bi-continuous nanoporous bismuth (np-Bi) electrodes are fabricated via a simple one-step electrochemical dealloying strategy from Pb-Bi binary alloy. The unique bi-continuous porous structure ensures highly effective charge transfer; meanwhile, the controllable millimeter-sized geometric porous structure enables easy catalyst adjustment to expose highly suitable surface curvatures with abundant reactive sites. This results in a high selectivity of 92.6% and superior potential window (400 mV, selectivity > 88%) for the electrochemical reduction of carbon dioxide to formate. Our scalable strategy provides a feasible pathway for mass-producing high-performance and versatile CO(2) electrocatalysts. |
---|