Cargando…

Quantifying the Intrinsic Strength of C–H⋯O Intermolecular Interactions

It has been recognized that the C–H⋯O structural motif can be present in destabilizing as well as highly stabilizing intermolecular environments. Thus, it should be of interest to describe the strength of the C–H⋯O hydrogen bond for constant structural factors so that this intrinsic strength can be...

Descripción completa

Detalles Bibliográficos
Autores principales: Czernek, Jiří, Brus, Jiří, Czerneková, Vladimíra, Kobera, Libor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254764/
https://www.ncbi.nlm.nih.gov/pubmed/37298953
http://dx.doi.org/10.3390/molecules28114478
Descripción
Sumario:It has been recognized that the C–H⋯O structural motif can be present in destabilizing as well as highly stabilizing intermolecular environments. Thus, it should be of interest to describe the strength of the C–H⋯O hydrogen bond for constant structural factors so that this intrinsic strength can be quantified and compared to other types of interactions. This description is provided here for C(2h)-symmetric dimers of acrylic acid by means of the calculations that employ the coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] together with an extrapolation to the complete basis set (CBS) limit. Dimers featuring the C–H⋯O and O–H⋯O hydrogens bonds are carefully investigated in a wide range of intermolecular separations by the CCSD(T)/CBS approach, and also by the symmetry-adapted perturbation theory (SAPT) method, which is based on the density-functional theory (DFT) treatment of monomers. While the nature of these two types of hydrogen bonding is very similar according to the SAPT-DFT/CBS calculations and on the basis of a comparison of the intermolecular potential curves, the intrinsic strength of the C–H⋯O interaction is found to be about a quarter of its O–H⋯O counterpart that is less than one might anticipate.