Cargando…

Theoretical Description of Attosecond X-ray Absorption Spectroscopy of Frenkel Exciton Dynamics

Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency o...

Descripción completa

Detalles Bibliográficos
Autores principales: Hansen, Tim, Bezriadina, Tatiana, Popova-Gorelova, Daria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254768/
https://www.ncbi.nlm.nih.gov/pubmed/37298978
http://dx.doi.org/10.3390/molecules28114502
Descripción
Sumario:Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency of light-harvesting. Attosecond X-ray pulses are the tool with the necessary temporal resolution to resolve pure electronic processes with atomic sensitivity. We describe how attosecond X-ray pulses can probe coherent electronic processes during Frenkel-exciton transport in molecular aggregates. We analyze time-resolved absorption cross section taking broad spectral bandwidth of an attosecond pulse into account. We demonstrate that attosecond X-ray absorption spectra can reveal delocalization degree of coherent exciton transfer dynamics.