Cargando…

Highly Efficient ITO-Free Quantum-Dot Light Emitting Diodes via Solution-Processed PEDOT:PSS Semitransparent Electrode

We present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is kno...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jin Hyun, Kim, Min Gye, Jeong, Jun Hyung, Park, Min Ho, Ha, Hyoun Ji, Kang, Seong Jae, Kang, Seong Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254849/
https://www.ncbi.nlm.nih.gov/pubmed/37297186
http://dx.doi.org/10.3390/ma16114053
Descripción
Sumario:We present a study on the potential use of sulfuric acid-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a viable alternative to indium tin oxide (ITO) electrodes in quantum dot light-emitting diodes (QLEDs). ITO, despite its high conductivity and transparency, is known for its disadvantages of being brittle, fragile, and expensive. Furthermore, due to the high hole injection barrier of quantum dots, the need for electrodes with a higher work function is becoming more significant. In this report, we present solution-processed, sulfuric acid-treated PEDOT:PSS electrodes for highly efficient QLEDs. The high work function of the PEDOT:PSS electrodes improved the performance of the QLEDs by facilitating hole injection. We demonstrated the recrystallization and conductivity enhancement of PEDOT:PSS upon sulfuric acid treatment using X-ray photoelectron spectroscopy and Hall measurement. Ultraviolet photoelectron spectroscopy (UPS) analysis of QLEDs showed that sulfuric acid-treated PEDOT:PSS exhibited a higher work function than ITO. The maximum current efficiency and external quantum efficiency based on the PEDOT:PSS electrode QLEDs were measured as 46.53 cd/A and 11.01%, which were three times greater than ITO electrode QLEDs. These findings suggest that PEDOT:PSS can serve as a promising replacement for ITO electrodes in the development of ITO-free QLED devices.