Cargando…

Fe–Ni/MWCNTs Nano-Composites for Hexavalent Chromium Reduction in Aqueous Environment

A novel Cr (VI) removal material was designed and produced comprising multi-walled carbon nanotubes (MWCNTs) as a support with a high specific surface area and the loaded Fe–Ni bimetallic particles as catalytic reducing agents. Such a design permits the composite particle to perform the adsorption,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Zeyu, Gao, Hui, Ma, Xiaolong, Jia, Xiaodong, Wen, Dongsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254850/
https://www.ncbi.nlm.nih.gov/pubmed/37298888
http://dx.doi.org/10.3390/molecules28114412
Descripción
Sumario:A novel Cr (VI) removal material was designed and produced comprising multi-walled carbon nanotubes (MWCNTs) as a support with a high specific surface area and the loaded Fe–Ni bimetallic particles as catalytic reducing agents. Such a design permits the composite particle to perform the adsorption, reduction, and immobilisation of Cr (VI) quickly and efficiently. Due to MWCNTs’ physical adsorption, Cr (VI) in solution aggregates in the vicinity of the composite, and Fe rapidly reduces Cr (VI) to Cr (III) catalysed by Ni. The results demonstrated that the Fe–Ni/MWCNTs exhibits an adsorption capacity of 207 mg/g at pH = 6.4 for Cr (VI) and 256 mg/g at pH 4.8, which is about twice those reported for other materials under similar conditions. The formed Cr (III) is solidified to the surface by MWCNTs and remains stable for several months without secondary contamination. The reusability of the composites was proven by retaining at least 90% of the adsorption capacity for five instances of reutilization. Considering the facile synthesis process, low cost of raw material, and reusability of the formed Fe–Ni/MWCNTs, this work shows great potential for industrialisation.