Cargando…
Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer
Typically, archers prepare two sets of bows for competitions in case of bow breakage, but if the limbs of the bow break during a match, archers can become psychologically disadvantaged, leading to potentially fatal consequences. Archers are very sensitive to the durability and vibration of their bow...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254854/ https://www.ncbi.nlm.nih.gov/pubmed/37297182 http://dx.doi.org/10.3390/ma16114048 |
_version_ | 1785056740544348160 |
---|---|
author | Heo, Won Wook An, Seung Kook Yeum, Jeong Hyun Yang, Seong Baek Choi, Sejin |
author_facet | Heo, Won Wook An, Seung Kook Yeum, Jeong Hyun Yang, Seong Baek Choi, Sejin |
author_sort | Heo, Won Wook |
collection | PubMed |
description | Typically, archers prepare two sets of bows for competitions in case of bow breakage, but if the limbs of the bow break during a match, archers can become psychologically disadvantaged, leading to potentially fatal consequences. Archers are very sensitive to the durability and vibration of their bows. While the vibration-damping properties of Bakelite(®) stabilizer are excellent, its low density and somewhat lower strength and durability are disadvantages. As a solution, we used carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) for the archery limb with stabilizer, commonly used for the limbs of the bow, to manufacture the limb. The stabilizer was reverse-engineered from the Bakelite(®) product and manufactured using glass fiber-reinforced plastic in the same shape as the existing product. Analyzing the vibration-damping effect and researching ways to reduce the vibration that occurs during shooting through 3D modeling and simulation, it was possible to evaluate the characteristics and the effect of reducing the limb’s vibration by manufacturing archery bows and limbs using carbon fiber- and glass fiber-reinforced composites. The objective of this study was to manufacture archery bows using CFRP and GFRP, and to assess their characteristics as well as their effectiveness at reducing limb vibration. Through testing, the limb and stabilizer that were produced were determined to not fall behind the abilities of the bows currently used by athletes, and they also exhibited a noticeable reduction in vibrations. |
format | Online Article Text |
id | pubmed-10254854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102548542023-06-10 Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer Heo, Won Wook An, Seung Kook Yeum, Jeong Hyun Yang, Seong Baek Choi, Sejin Materials (Basel) Article Typically, archers prepare two sets of bows for competitions in case of bow breakage, but if the limbs of the bow break during a match, archers can become psychologically disadvantaged, leading to potentially fatal consequences. Archers are very sensitive to the durability and vibration of their bows. While the vibration-damping properties of Bakelite(®) stabilizer are excellent, its low density and somewhat lower strength and durability are disadvantages. As a solution, we used carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) for the archery limb with stabilizer, commonly used for the limbs of the bow, to manufacture the limb. The stabilizer was reverse-engineered from the Bakelite(®) product and manufactured using glass fiber-reinforced plastic in the same shape as the existing product. Analyzing the vibration-damping effect and researching ways to reduce the vibration that occurs during shooting through 3D modeling and simulation, it was possible to evaluate the characteristics and the effect of reducing the limb’s vibration by manufacturing archery bows and limbs using carbon fiber- and glass fiber-reinforced composites. The objective of this study was to manufacture archery bows using CFRP and GFRP, and to assess their characteristics as well as their effectiveness at reducing limb vibration. Through testing, the limb and stabilizer that were produced were determined to not fall behind the abilities of the bows currently used by athletes, and they also exhibited a noticeable reduction in vibrations. MDPI 2023-05-29 /pmc/articles/PMC10254854/ /pubmed/37297182 http://dx.doi.org/10.3390/ma16114048 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Heo, Won Wook An, Seung Kook Yeum, Jeong Hyun Yang, Seong Baek Choi, Sejin Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title | Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title_full | Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title_fullStr | Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title_full_unstemmed | Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title_short | Manufacture and Vibration-Damping Effect of Composites for Archery Carbon Fiber-Reinforced Polymer Limb with Glass Fiber-Reinforced Polymer Stabilizer |
title_sort | manufacture and vibration-damping effect of composites for archery carbon fiber-reinforced polymer limb with glass fiber-reinforced polymer stabilizer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254854/ https://www.ncbi.nlm.nih.gov/pubmed/37297182 http://dx.doi.org/10.3390/ma16114048 |
work_keys_str_mv | AT heowonwook manufactureandvibrationdampingeffectofcompositesforarcherycarbonfiberreinforcedpolymerlimbwithglassfiberreinforcedpolymerstabilizer AT anseungkook manufactureandvibrationdampingeffectofcompositesforarcherycarbonfiberreinforcedpolymerlimbwithglassfiberreinforcedpolymerstabilizer AT yeumjeonghyun manufactureandvibrationdampingeffectofcompositesforarcherycarbonfiberreinforcedpolymerlimbwithglassfiberreinforcedpolymerstabilizer AT yangseongbaek manufactureandvibrationdampingeffectofcompositesforarcherycarbonfiberreinforcedpolymerlimbwithglassfiberreinforcedpolymerstabilizer AT choisejin manufactureandvibrationdampingeffectofcompositesforarcherycarbonfiberreinforcedpolymerlimbwithglassfiberreinforcedpolymerstabilizer |