Cargando…
COVID-19 Detection from Cough Recordings Using Bag-of-Words Classifiers
Reliable detection of COVID-19 from cough recordings is evaluated using bag-of-words classifiers. The effect of using four distinct feature extraction procedures and four different encoding strategies is evaluated in terms of the Area Under Curve (AUC), accuracy, sensitivity, and F1-score. Additiona...
Autores principales: | Pavel, Irina, Ciocoiu, Iulian B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255075/ https://www.ncbi.nlm.nih.gov/pubmed/37299721 http://dx.doi.org/10.3390/s23114996 |
Ejemplares similares
-
New bag of deep visual words based features to classify chest x-ray images for COVID-19 diagnosis
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Detection of COVID-19 in X-ray images by classification of bag of visual words using neural networks
por: Nabizadeh-Shahre-Babak, Zahra, et al.
Publicado: (2021) -
An ensemble predictive analytics of COVID-19 infodemic tweets using bag of words
por: Olaleye, T.O., et al.
Publicado: (2021) -
Spatio-Temporal Scale Coded Bag-of-Words
por: Govender, Divina, et al.
Publicado: (2020) -
Pooling region learning of visual word for image classification using bag-of-visual-words model
por: Xu, Ye, et al.
Publicado: (2020)