Cargando…
SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing
Deep unrolling networks (DUNs) have emerged as a promising approach for solving compressed sensing (CS) problems due to their superior explainability, speed, and performance compared to classical deep network models. However, the CS performance in terms of efficiency and accuracy remains a principal...
Autores principales: | Song, Heping, Ding, Qifeng, Gong, Jingyao, Meng, Hongying, Lai, Yuping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255077/ https://www.ncbi.nlm.nih.gov/pubmed/37299870 http://dx.doi.org/10.3390/s23115142 |
Ejemplares similares
-
Unrolled-DOT: an interpretable deep network for diffuse optical tomography
por: Zhao, Yongyi, et al.
Publicado: (2023) -
Unrolling time: Christiaan Huygens and the mathematization of nature
por: Yoder-Gerstmeyer, Joella
Publicado: (1988) -
Salsas
por: Adam, Cornelia -
3D cyclorama for digital unrolling and visualisation of deformed tubes
por: Rossides, Charalambos, et al.
Publicado: (2021) -
Memory-Efficient Training for Fully Unrolled Deep Learned PET Image Reconstruction with Iteration-Dependent Targets
por: Corda-D’Incan, Guillaume, et al.
Publicado: (2022)