Cargando…

MVDR-LSTM Distance Estimation Model Based on Diagonal Double Rectangular Array

Deep learning algorithms have the advantages of a powerful time series prediction ability and the real-time processing of massive samples of big data. Herein, a new roller fault distance estimation method is proposed to address the problems of the simple structure and long conveying distance of belt...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiong, Wu, Wenbo, Li, Jialu, Dong, Fan, Wan, Shuting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255096/
https://www.ncbi.nlm.nih.gov/pubmed/37299820
http://dx.doi.org/10.3390/s23115094
Descripción
Sumario:Deep learning algorithms have the advantages of a powerful time series prediction ability and the real-time processing of massive samples of big data. Herein, a new roller fault distance estimation method is proposed to address the problems of the simple structure and long conveying distance of belt conveyors. In this method, a diagonal double rectangular microphone array is used as the acquisition device, minimum variance distortionless response (MVDR) and long short-term memory network (LSTM) are used as the processing models, and the roller fault distance data are classified to complete the estimation of the idler fault distance. The experimental results showed that this method could achieve high-accuracy fault distance identification in a noisy environment and had better accuracy than the conventional beamforming algorithm (CBF)-LSTM and functional beamforming algorithm (FBF)-LSTM. In addition, this method could also be applied to other industrial testing fields and has a wide range of application prospects.