Cargando…
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
Predictive maintenance in the car industry is an active field of research for machine learning and anomaly detection. The capability of cars to produce time series data from sensors is growing as the car industry is heading towards more connected and electric vehicles. Unsupervised anomaly detectors...
Autores principales: | Cherdo, Yann, Miramond, Benoit, Pegatoquet, Alain, Vallauri, Alain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255105/ https://www.ncbi.nlm.nih.gov/pubmed/37299741 http://dx.doi.org/10.3390/s23115013 |
Ejemplares similares
-
Trainable quantization for Speedy Spiking Neural Networks
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
SPIDEN: deep Spiking Neural Networks for efficient image denoising
por: Castagnetti, Andrea, et al.
Publicado: (2023) -
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
por: Xu, Kang, et al.
Publicado: (2023) -
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023)