Cargando…
Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection
Aiming at the problems of low detection efficiency and poor detection accuracy caused by texture feature interference and dramatic changes in the scale of defect on steel surfaces, an improved YOLOv5s model is proposed. In this study, we propose a novel re-parameterized large kernel C3 module, which...
Autores principales: | Xia, Kewen, Lv, Zhongliang, Zhou, Chuande, Gu, Guojun, Zhao, Zhiqiang, Liu, Kang, Li, Zelun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255213/ https://www.ncbi.nlm.nih.gov/pubmed/37299841 http://dx.doi.org/10.3390/s23115114 |
Ejemplares similares
-
Global contextual attention augmented YOLO with ConvMixer prediction heads for PCB surface defect detection
por: Xia, Kewen, et al.
Publicado: (2023) -
EFC-YOLO: An Efficient Surface-Defect-Detection Algorithm for Steel Strips
por: Li, Yanshun, et al.
Publicado: (2023) -
A Novel ST-YOLO Network for Steel-Surface-Defect Detection
por: Ma, Hongtao, et al.
Publicado: (2023) -
DSTEELNet: A Real-Time Parallel Dilated CNN with Atrous Spatial Pyramid Pooling for Detecting and Classifying Defects in Surface Steel Strips
por: Ahmed, Khaled R.
Publicado: (2023) -
CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection
por: Ye, Jing, et al.
Publicado: (2022)