Cargando…
Preparation and Properties of Natural Polysaccharide-Based Drug Delivery Nanoparticles
In recent years, natural polysaccharides have been widely used in the preparation of drug delivery systems. In this paper, novel polysaccharide-based nanoparticles were prepared by layer-by-layer assembly technology using silica as a template. The layers of nanoparticles were constructed based on th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255217/ https://www.ncbi.nlm.nih.gov/pubmed/37299309 http://dx.doi.org/10.3390/polym15112510 |
Sumario: | In recent years, natural polysaccharides have been widely used in the preparation of drug delivery systems. In this paper, novel polysaccharide-based nanoparticles were prepared by layer-by-layer assembly technology using silica as a template. The layers of nanoparticles were constructed based on the electrostatic interaction between a new pectin named NPGP and chitosan (CS). The targeting ability of nanoparticles was formed by grafting the RGD peptide, a tri-peptide motif containing arginine, glycine, and aspartic acid with high affinity to integrin receptors. The layer-by-layer assembly nanoparticles (RGD-(NPGP/CS)(3)NPGP) exhibited a high encapsulation efficiency (83.23 ± 6.12%), loading capacity (76.51 ± 1.24%), and pH-sensitive release property for doxorubicin. The RGD-(NPGP/CS)(3)NPGP nanoparticles showed better targeting to HCT-116 cells, the integrin αvβ3 high expression human colonic epithelial tumor cell line with higher uptake efficiency than MCF7 cells, the human breast carcinoma cell line with normal integrin expression. In vitro antitumor activity tests showed that the doxorubicin-loaded nanoparticles could effectively inhibit the proliferation of the HCT-116 cells. In conclusion, RGD-(NPGP/CS)(3)NPGP nanoparticles have potential as novel anticancer drug carriers because of their good targeting and drug-carrying activity. |
---|