Cargando…
Research on Anomaly Network Detection Based on Self-Attention Mechanism
Network traffic anomaly detection is a key step in identifying and preventing network security threats. This study aims to construct a new deep-learning-based traffic anomaly detection model through in-depth research on new feature-engineering methods, significantly improving the efficiency and accu...
Autores principales: | Hu, Wanting, Cao, Lu, Ruan, Qunsheng, Wu, Qingfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255318/ https://www.ncbi.nlm.nih.gov/pubmed/37299786 http://dx.doi.org/10.3390/s23115059 |
Ejemplares similares
-
DE-CNN: An Improved Identity Recognition Algorithm Based on the Emotional Electroencephalography
por: Wang, Yingdong, et al.
Publicado: (2020) -
Anomaly detection method for building energy consumption in multivariate time series based on graph attention mechanism
por: Zhang, Zhe, et al.
Publicado: (2023) -
Rumor detection based on propagation graph neural network with attention mechanism
por: Wu, Zhiyuan, et al.
Publicado: (2020) -
MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection
Publicado: (2020) -
Anomaly Detection of GAN Industrial Image Based on Attention Feature Fusion
por: Zhang, Lin, et al.
Publicado: (2022)