Cargando…
Human Activity Recognition Method Based on FMCW Radar Sensor with Multi-Domain Feature Attention Fusion Network
This paper proposes a human activity recognition (HAR) method for frequency-modulated continuous wave (FMCW) radar sensors. The method utilizes a multi-domain feature attention fusion network (MFAFN) model that addresses the limitation of relying on a single range or velocity feature to describe hum...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255355/ https://www.ncbi.nlm.nih.gov/pubmed/37299830 http://dx.doi.org/10.3390/s23115100 |
Sumario: | This paper proposes a human activity recognition (HAR) method for frequency-modulated continuous wave (FMCW) radar sensors. The method utilizes a multi-domain feature attention fusion network (MFAFN) model that addresses the limitation of relying on a single range or velocity feature to describe human activity. Specifically, the network fuses time-Doppler (TD) and time-range (TR) maps of human activities, resulting in a more comprehensive representation of the activities being performed. In the feature fusion phase, the multi-feature attention fusion module (MAFM) combines features of different depth levels by introducing a channel attention mechanism. Additionally, a multi-classification focus loss (MFL) function is applied to classify confusable samples. The experimental results demonstrate that the proposed method achieves 97.58% recognition accuracy on the dataset provided by the University of Glasgow, UK. Compared to existing HAR methods for the same dataset, the proposed method showed an improvement of about 0.9–5.5%, especially in the classification of confusable activities, showing an improvement of up to 18.33%. |
---|