Cargando…
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
We propose a new fault diagnosis model for rolling bearings based on a hybrid kernel support vector machine (SVM) and Bayesian optimization (BO). The model uses discrete Fourier transform (DFT) to extract fifteen features from vibration signals in the time and frequency domains of four bearing failu...
Autores principales: | Song, Xinmin, Wei, Weihua, Zhou, Junbo, Ji, Guojun, Hussain, Ghulam, Xiao, Maohua, Geng, Guosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255357/ https://www.ncbi.nlm.nih.gov/pubmed/37299863 http://dx.doi.org/10.3390/s23115137 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on WGWOA-VMD-SVM
por: Zhou, Junbo, et al.
Publicado: (2022) -
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
Fault Diagnosis for Rolling Bearings Based on Fine-Sorted Dispersion Entropy and SVM Optimized with Mutation SCA-PSO
por: Fu, Wenlong, et al.
Publicado: (2019) -
Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings
por: Zhou, Hongdi, et al.
Publicado: (2017)