Cargando…
Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores
Carbon fibres used as a honeycomb core material (subject to a proper in-depth analysis of their reinforcement patterns) allows solving the thermo-dimensional stability problem of the units for space systems. Based on the results of numerical simulations with the support of finite element analysis, t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255388/ https://www.ncbi.nlm.nih.gov/pubmed/37299302 http://dx.doi.org/10.3390/polym15112503 |
_version_ | 1785056859558772736 |
---|---|
author | Kondratiev, Andrii Píštěk, Václav Gajdachuk, Vitaliy Kharchenko, Maksym Nabokina, Tetyana Kučera, Pavel Kučera, Ondřej |
author_facet | Kondratiev, Andrii Píštěk, Václav Gajdachuk, Vitaliy Kharchenko, Maksym Nabokina, Tetyana Kučera, Pavel Kučera, Ondřej |
author_sort | Kondratiev, Andrii |
collection | PubMed |
description | Carbon fibres used as a honeycomb core material (subject to a proper in-depth analysis of their reinforcement patterns) allows solving the thermo-dimensional stability problem of the units for space systems. Based on the results of numerical simulations with the support of finite element analysis, the paper provides an evaluation of the accuracy of analytical dependencies for the determination of the moduli of elasticity of a carbon fibre honeycomb core in tension/compression and shear. It is shown that a carbon fibre honeycomb reinforcement pattern has a significant impact on the mechanical performance of the carbon fibre honeycomb core. For example, for honeycombs measuring 10 mm in height, the maximum shear modulus values corresponding to the reinforcement pattern of ±45° exceed the minimum values for a reinforcement pattern of 0° and 90° by more than 5 times in the XOZ plane and 4 times for the shear modulus in the YOZ plane. The maximum modulus of the elasticity of the honeycomb core in the transverse tension, corresponding to a reinforcement pattern of ±75°, exceeds the minimum modulus for the reinforcement pattern of ±15° more than 3 times. We observe a decrease in the values of the mechanical performance of the carbon fibre honeycomb core depending on its height. With a honeycomb reinforcement pattern of ±45°, the decrease in the shear modulus is 10% in the XOZ plane and 15% in the YOZ plane. The reduction in the modulus of elasticity in the transverse tension for the reinforcement pattern does not exceed 5%. It is shown that in order to ensure high-level moduli of elasticity with respect to tension/compression and shear at the same time, it is necessary to focus on a reinforcement pattern of ±64°. The paper covers the development of the experimental prototype technology that produces carbon fibre honeycomb cores and structures for aerospace applications. It is shown by experiments that the use of a larger number of thin layers of unidirectional carbon fibres provides more than a 2-time reduction in honeycomb density while maintaining high values of strength and stiffness. Our findings can permit a significant expansion of the area of application relative to this class of honeycomb cores in aerospace engineering. |
format | Online Article Text |
id | pubmed-10255388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102553882023-06-10 Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores Kondratiev, Andrii Píštěk, Václav Gajdachuk, Vitaliy Kharchenko, Maksym Nabokina, Tetyana Kučera, Pavel Kučera, Ondřej Polymers (Basel) Article Carbon fibres used as a honeycomb core material (subject to a proper in-depth analysis of their reinforcement patterns) allows solving the thermo-dimensional stability problem of the units for space systems. Based on the results of numerical simulations with the support of finite element analysis, the paper provides an evaluation of the accuracy of analytical dependencies for the determination of the moduli of elasticity of a carbon fibre honeycomb core in tension/compression and shear. It is shown that a carbon fibre honeycomb reinforcement pattern has a significant impact on the mechanical performance of the carbon fibre honeycomb core. For example, for honeycombs measuring 10 mm in height, the maximum shear modulus values corresponding to the reinforcement pattern of ±45° exceed the minimum values for a reinforcement pattern of 0° and 90° by more than 5 times in the XOZ plane and 4 times for the shear modulus in the YOZ plane. The maximum modulus of the elasticity of the honeycomb core in the transverse tension, corresponding to a reinforcement pattern of ±75°, exceeds the minimum modulus for the reinforcement pattern of ±15° more than 3 times. We observe a decrease in the values of the mechanical performance of the carbon fibre honeycomb core depending on its height. With a honeycomb reinforcement pattern of ±45°, the decrease in the shear modulus is 10% in the XOZ plane and 15% in the YOZ plane. The reduction in the modulus of elasticity in the transverse tension for the reinforcement pattern does not exceed 5%. It is shown that in order to ensure high-level moduli of elasticity with respect to tension/compression and shear at the same time, it is necessary to focus on a reinforcement pattern of ±64°. The paper covers the development of the experimental prototype technology that produces carbon fibre honeycomb cores and structures for aerospace applications. It is shown by experiments that the use of a larger number of thin layers of unidirectional carbon fibres provides more than a 2-time reduction in honeycomb density while maintaining high values of strength and stiffness. Our findings can permit a significant expansion of the area of application relative to this class of honeycomb cores in aerospace engineering. MDPI 2023-05-29 /pmc/articles/PMC10255388/ /pubmed/37299302 http://dx.doi.org/10.3390/polym15112503 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kondratiev, Andrii Píštěk, Václav Gajdachuk, Vitaliy Kharchenko, Maksym Nabokina, Tetyana Kučera, Pavel Kučera, Ondřej Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title | Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title_full | Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title_fullStr | Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title_full_unstemmed | Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title_short | Effect of Ply Orientation on the Mechanical Performance of Carbon Fibre Honeycomb Cores |
title_sort | effect of ply orientation on the mechanical performance of carbon fibre honeycomb cores |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255388/ https://www.ncbi.nlm.nih.gov/pubmed/37299302 http://dx.doi.org/10.3390/polym15112503 |
work_keys_str_mv | AT kondratievandrii effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT pistekvaclav effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT gajdachukvitaliy effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT kharchenkomaksym effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT nabokinatetyana effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT kucerapavel effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores AT kuceraondrej effectofplyorientationonthemechanicalperformanceofcarbonfibrehoneycombcores |