Cargando…
Bayesian-Based Hyperparameter Optimization of 1D-CNN for Structural Anomaly Detection
With the rapid development of sensor technology, structural health monitoring data have tended to become more massive. Deep learning has advantages when handling big data, and has therefore been widely researched for diagnosing structural anomalies. However, for the diagnosis of different structural...
Autores principales: | Li, Xiaofei, Guo, Hainan, Xu, Langxing, Xing, Zezheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255421/ https://www.ncbi.nlm.nih.gov/pubmed/37299785 http://dx.doi.org/10.3390/s23115058 |
Ejemplares similares
-
Early Diagnosis of COVID-19 Images Using Optimal CNN Hyperparameters
por: Saad, Mohamed H., et al.
Publicado: (2022) -
Disease prediction via Bayesian hyperparameter optimization and ensemble learning
por: Gao, Liyuan, et al.
Publicado: (2020) -
CovidXrayNet: Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR
por: Monshi, Maram Mahmoud A., et al.
Publicado: (2021) -
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM
por: Mahardika T, Nurul Qashri, et al.
Publicado: (2023) -
Hyperparameter Optimization of Bayesian Neural Network Using Bayesian Optimization and Intelligent Feature Engineering for Load Forecasting
por: Zulfiqar, M., et al.
Publicado: (2022)