Cargando…
Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications
The need for power-efficient devices, such as smart sensor nodes, mobile devices, and portable digital gadgets, is markedly increasing and these devices are becoming commonly used in daily life. These devices continue to demand an energy-efficient cache memory designed on Static Random-Access Memory...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255441/ https://www.ncbi.nlm.nih.gov/pubmed/37299822 http://dx.doi.org/10.3390/s23115095 |
_version_ | 1785056872846327808 |
---|---|
author | Thirugnanam, Sargunam Soong, Lim Way Prabhu, Chinnaraj Munirathina Singh, Ajay Kumar |
author_facet | Thirugnanam, Sargunam Soong, Lim Way Prabhu, Chinnaraj Munirathina Singh, Ajay Kumar |
author_sort | Thirugnanam, Sargunam |
collection | PubMed |
description | The need for power-efficient devices, such as smart sensor nodes, mobile devices, and portable digital gadgets, is markedly increasing and these devices are becoming commonly used in daily life. These devices continue to demand an energy-efficient cache memory designed on Static Random-Access Memory (SRAM) with enhanced speed, performance, and stability to perform on-chip data processing and faster computations. This paper presents an energy-efficient and variability-resilient 11T (E(2)VR11T) SRAM cell, which is designed with a novel Data-Aware Read–Write Assist (DARWA) technique. The E(2)VR11T cell comprises 11 transistors and operates with single-ended read and dynamic differential write circuits. The simulated results in a 45 nm CMOS technology exhibit 71.63% and 58.77% lower read energy than ST9T and LP10T and lower write energies of 28.25% and 51.79% against S8T and LP10T cells, respectively. The leakage power is reduced by 56.32% and 40.90% compared to ST9T and LP10T cells. The read static noise margin (RSNM) is improved by 1.94× and 0.18×, while the write noise margin (WNM) is improved by 19.57% and 8.70% against C6T and S8T cells. The variability investigation using the Monte Carlo simulation on 5000 samples highly validates the robustness and variability resilience of the proposed cell. The improved overall performance of the proposed E(2)VR11T cell makes it suitable for low-power applications. |
format | Online Article Text |
id | pubmed-10255441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102554412023-06-10 Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications Thirugnanam, Sargunam Soong, Lim Way Prabhu, Chinnaraj Munirathina Singh, Ajay Kumar Sensors (Basel) Article The need for power-efficient devices, such as smart sensor nodes, mobile devices, and portable digital gadgets, is markedly increasing and these devices are becoming commonly used in daily life. These devices continue to demand an energy-efficient cache memory designed on Static Random-Access Memory (SRAM) with enhanced speed, performance, and stability to perform on-chip data processing and faster computations. This paper presents an energy-efficient and variability-resilient 11T (E(2)VR11T) SRAM cell, which is designed with a novel Data-Aware Read–Write Assist (DARWA) technique. The E(2)VR11T cell comprises 11 transistors and operates with single-ended read and dynamic differential write circuits. The simulated results in a 45 nm CMOS technology exhibit 71.63% and 58.77% lower read energy than ST9T and LP10T and lower write energies of 28.25% and 51.79% against S8T and LP10T cells, respectively. The leakage power is reduced by 56.32% and 40.90% compared to ST9T and LP10T cells. The read static noise margin (RSNM) is improved by 1.94× and 0.18×, while the write noise margin (WNM) is improved by 19.57% and 8.70% against C6T and S8T cells. The variability investigation using the Monte Carlo simulation on 5000 samples highly validates the robustness and variability resilience of the proposed cell. The improved overall performance of the proposed E(2)VR11T cell makes it suitable for low-power applications. MDPI 2023-05-26 /pmc/articles/PMC10255441/ /pubmed/37299822 http://dx.doi.org/10.3390/s23115095 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thirugnanam, Sargunam Soong, Lim Way Prabhu, Chinnaraj Munirathina Singh, Ajay Kumar Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title | Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title_full | Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title_fullStr | Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title_full_unstemmed | Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title_short | Energy-Efficient and Variability-Resilient 11T SRAM Design Using Data-Aware Read–Write Assist (DARWA) Technique for Low-Power Applications |
title_sort | energy-efficient and variability-resilient 11t sram design using data-aware read–write assist (darwa) technique for low-power applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255441/ https://www.ncbi.nlm.nih.gov/pubmed/37299822 http://dx.doi.org/10.3390/s23115095 |
work_keys_str_mv | AT thirugnanamsargunam energyefficientandvariabilityresilient11tsramdesignusingdataawarereadwriteassistdarwatechniqueforlowpowerapplications AT soonglimway energyefficientandvariabilityresilient11tsramdesignusingdataawarereadwriteassistdarwatechniqueforlowpowerapplications AT prabhuchinnarajmunirathina energyefficientandvariabilityresilient11tsramdesignusingdataawarereadwriteassistdarwatechniqueforlowpowerapplications AT singhajaykumar energyefficientandvariabilityresilient11tsramdesignusingdataawarereadwriteassistdarwatechniqueforlowpowerapplications |