Cargando…

Tendon Stress Estimation from Strain Data of a Bridge Girder Using Machine Learning-Based Surrogate Model

Prestressed girders reduce cracking and allow for long spans, but their construction requires complex equipment and strict quality control. Their accurate design depends on a precise knowledge of tensioning force and stresses, as well as monitoring the tendon force to prevent excessive creep. Estima...

Descripción completa

Detalles Bibliográficos
Autores principales: Khayam, Sadia Umer, Ajmal, Ammar, Park, Junyoung, Kim, In-Ho, Park, Jong-Woong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255442/
https://www.ncbi.nlm.nih.gov/pubmed/37299765
http://dx.doi.org/10.3390/s23115040
Descripción
Sumario:Prestressed girders reduce cracking and allow for long spans, but their construction requires complex equipment and strict quality control. Their accurate design depends on a precise knowledge of tensioning force and stresses, as well as monitoring the tendon force to prevent excessive creep. Estimating tendon stress is challenging due to limited access to prestressing tendons. This study utilizes a strain-based machine learning method to estimate real-time applied tendon stress. A dataset was generated using finite element method (FEM) analysis, varying the tendon stress in a 45 m girder. Network models were trained and tested on various tendon force scenarios, with prediction errors of less than 10%. The model with the lowest RMSE was chosen for stress prediction, accurately estimating the tendon stress, and providing real-time tensioning force adjustment. The research offers insights into optimizing girder locations and strain numbers. The results demonstrate the feasibility of using machine learning with strain data for instant tendon force estimation.