Cargando…
CLDTLog: System Log Anomaly Detection Method Based on Contrastive Learning and Dual Objective Tasks
System logs are a crucial component of system maintainability, as they record the status of the system and essential events for troubleshooting and maintenance when necessary. Therefore, anomaly detection of system logs is crucial. Recent research has focused on extracting semantic information from...
Autores principales: | Tian, Gaoqi, Luktarhan, Nurbol, Wu, Haojie, Shi, Zhaolei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255444/ https://www.ncbi.nlm.nih.gov/pubmed/37299767 http://dx.doi.org/10.3390/s23115042 |
Ejemplares similares
-
ConAnomaly: Content-Based Anomaly Detection for System Logs
por: Lv, Dan, et al.
Publicado: (2021) -
An Android Malware Detection Approach to Enhance Node Feature Differences in a Function Call Graph Based on GCNs
por: Wu, Haojie, et al.
Publicado: (2023) -
TSFN: A Novel Malicious Traffic Classification Method Using BERT and LSTM
por: Shi, Zhaolei, et al.
Publicado: (2023) -
Log Sequence Anomaly Detection Method Based on Contrastive Adversarial Training and Dual Feature Extraction
por: Wang, Qiaozheng, et al.
Publicado: (2021) -
A Hybrid Analysis-Based Approach to Android Malware Family Classification
por: Ding, Chao, et al.
Publicado: (2021)